RF-Based Machine Learning Solution for Indoor Person Detection

Pedro Maia De Santana, Thiago A. Scher, J. Bazzo, Álvaro Augusto M. de Medeiros, V. Sousa
{"title":"RF-Based Machine Learning Solution for Indoor Person Detection","authors":"Pedro Maia De Santana, Thiago A. Scher, J. Bazzo, Álvaro Augusto M. de Medeiros, V. Sousa","doi":"10.4018/IJITN.2021040104","DOIUrl":null,"url":null,"abstract":"Machine learning techniques applied to radio frequency (RF) signals are used for many applications in addition to data communication. In this paper, the authors propose a machine learning solution for classifying the number of people within an indoor ambient. The main idea is to identify a pattern of received signal characteristics according to the number of people. Experimental measurements are performed using a software-defined radio platform inside a laboratory. The data collected is post-processed by applying a feature mapping technique based on mean, standard deviation, and Shannon information entropy. This feature-space data is then used to train a supervised machine learning network for classifying scenarios with zero, one, two, and three people inside. The proposed solution presents significant accuracy in classification performance.","PeriodicalId":120331,"journal":{"name":"Int. J. Interdiscip. Telecommun. Netw.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Interdiscip. Telecommun. Netw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJITN.2021040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Machine learning techniques applied to radio frequency (RF) signals are used for many applications in addition to data communication. In this paper, the authors propose a machine learning solution for classifying the number of people within an indoor ambient. The main idea is to identify a pattern of received signal characteristics according to the number of people. Experimental measurements are performed using a software-defined radio platform inside a laboratory. The data collected is post-processed by applying a feature mapping technique based on mean, standard deviation, and Shannon information entropy. This feature-space data is then used to train a supervised machine learning network for classifying scenarios with zero, one, two, and three people inside. The proposed solution presents significant accuracy in classification performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于射频的室内人检测机器学习解决方案
除了数据通信之外,应用于射频(RF)信号的机器学习技术还用于许多应用。在本文中,作者提出了一种机器学习解决方案,用于对室内环境中的人数进行分类。其主要思想是根据人数确定接收信号特征的模式。实验测量使用实验室内的软件定义无线电平台进行。采用基于均值、标准差和香农信息熵的特征映射技术对采集到的数据进行后处理。然后,这些特征空间数据被用来训练一个有监督的机器学习网络,用于对室内有0人、1人、2人和3人的场景进行分类。该方法在分类性能上具有显著的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tutorial for Space-Time ICI Parallel Cancellation Techniques for OFDM Systems Secure Protocol for Resource-Constrained IoT Device Authentication Cyclotomic Construction of Sparse Code Multiple Access With Improved Diversity Lapa Card: A Smart Membership Card for Authentication, Payments, and Directional Marketing Analysis of ADC Quantization and Clipping Effects on CDMA-OQAM-OFDM-Based WSAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1