Sebastian Hubenschmid, Johannes Zagermann, Daniel Leicht, Harald Reiterer, Tiare M. Feuchtner
{"title":"ARound the Smartphone: Investigating the Effects of Virtually-Extended Display Size on Spatial Memory","authors":"Sebastian Hubenschmid, Johannes Zagermann, Daniel Leicht, Harald Reiterer, Tiare M. Feuchtner","doi":"10.1145/3544548.3581438","DOIUrl":null,"url":null,"abstract":"Smartphones conveniently place large information spaces in the palms of our hands. While research has shown that larger screens positively affect spatial memory, workload, and user experience, smartphones remain fairly compact for the sake of device ergonomics and portability. Thus, we investigate the use of hybrid user interfaces to virtually increase the available display size by complementing the smartphone with an augmented reality head-worn display. We thereby combine the benefits of familiar touch interaction with the near-infinite visual display space afforded by augmented reality. To better understand the potential of virtually-extended displays and the possible issues of splitting the user’s visual attention between two screens (real and virtual), we conducted a within-subjects experiment with 24 participants completing navigation tasks using different virtually-augmented display sizes. Our findings reveal that a desktop monitor size represents a “sweet spot” for extending smartphones with augmented reality, informing the design of hybrid user interfaces.","PeriodicalId":314098,"journal":{"name":"Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3544548.3581438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Smartphones conveniently place large information spaces in the palms of our hands. While research has shown that larger screens positively affect spatial memory, workload, and user experience, smartphones remain fairly compact for the sake of device ergonomics and portability. Thus, we investigate the use of hybrid user interfaces to virtually increase the available display size by complementing the smartphone with an augmented reality head-worn display. We thereby combine the benefits of familiar touch interaction with the near-infinite visual display space afforded by augmented reality. To better understand the potential of virtually-extended displays and the possible issues of splitting the user’s visual attention between two screens (real and virtual), we conducted a within-subjects experiment with 24 participants completing navigation tasks using different virtually-augmented display sizes. Our findings reveal that a desktop monitor size represents a “sweet spot” for extending smartphones with augmented reality, informing the design of hybrid user interfaces.