Evolutionary Augmentation Policy Optimization for Self-supervised Learning

Noah Barrett, Zahra Sadeghi, S. Matwin
{"title":"Evolutionary Augmentation Policy Optimization for Self-supervised Learning","authors":"Noah Barrett, Zahra Sadeghi, S. Matwin","doi":"10.48550/arXiv.2303.01584","DOIUrl":null,"url":null,"abstract":"Self-supervised Learning (SSL) is a machine learning algorithm for pretraining Deep Neural Networks (DNNs) without requiring manually labeled data. The central idea of this learning technique is based on an auxiliary stage aka pretext task in which labeled data are created automatically through data augmentation and exploited for pretraining the DNN. However, the effect of each pretext task is not well studied or compared in the literature. In this paper, we study the contribution of augmentation operators on the performance of self supervised learning algorithms in a constrained settings. We propose an evolutionary search method for optimization of data augmentation pipeline in pretext tasks and measure the impact of augmentation operators in several SOTA SSL algorithms. By encoding different combination of augmentation operators in chromosomes we seek the optimal augmentation policies through an evolutionary optimization mechanism. We further introduce methods for analyzing and explaining the performance of optimized SSL algorithms. Our results indicate that our proposed method can find solutions that outperform the accuracy of classification of SSL algorithms which confirms the influence of augmentation policy choice on the overall performance of SSL algorithms. We also compare optimal SSL solutions found by our evolutionary search mechanism and show the effect of batch size in the pretext task on two visual datasets.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.01584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Self-supervised Learning (SSL) is a machine learning algorithm for pretraining Deep Neural Networks (DNNs) without requiring manually labeled data. The central idea of this learning technique is based on an auxiliary stage aka pretext task in which labeled data are created automatically through data augmentation and exploited for pretraining the DNN. However, the effect of each pretext task is not well studied or compared in the literature. In this paper, we study the contribution of augmentation operators on the performance of self supervised learning algorithms in a constrained settings. We propose an evolutionary search method for optimization of data augmentation pipeline in pretext tasks and measure the impact of augmentation operators in several SOTA SSL algorithms. By encoding different combination of augmentation operators in chromosomes we seek the optimal augmentation policies through an evolutionary optimization mechanism. We further introduce methods for analyzing and explaining the performance of optimized SSL algorithms. Our results indicate that our proposed method can find solutions that outperform the accuracy of classification of SSL algorithms which confirms the influence of augmentation policy choice on the overall performance of SSL algorithms. We also compare optimal SSL solutions found by our evolutionary search mechanism and show the effect of batch size in the pretext task on two visual datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自监督学习的进化增强策略优化
自监督学习(SSL)是一种用于预训练深度神经网络(dnn)的机器学习算法,无需手动标记数据。这种学习技术的核心思想是基于一个辅助阶段,即借口任务,其中通过数据增强自动创建标记数据,并用于DNN的预训练。然而,每种借口任务的效果在文献中并没有得到很好的研究或比较。本文研究了约束条件下增广算子对自监督学习算法性能的贡献。我们提出了一种用于优化借口任务中数据增强管道的进化搜索方法,并测量了几种SOTA SSL算法中增强算子的影响。通过在染色体中编码不同的增强算子组合,通过进化优化机制寻求最优的增强策略。我们进一步介绍了分析和解释优化SSL算法性能的方法。我们的结果表明,我们提出的方法可以找到优于SSL算法分类准确性的解决方案,这证实了增强策略选择对SSL算法整体性能的影响。我们还比较了进化搜索机制找到的最优SSL解决方案,并展示了借口任务中批大小对两个可视化数据集的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FishRecGAN: An End to End GAN Based Network for Fisheye Rectification and Calibration Should ChatGPT and Bard Share Revenue with Their Data Providers? A New Business Model for the AI Era Structural Vibration Signal Denoising Using Stacking Ensemble of Hybrid CNN-RNN A Comparison of Methods for Neural Network Aggregation One-class Damage Detector Using Deeper Fully Convolutional Data Descriptions for Civil Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1