Towards Robust Production Machine Learning Systems: Managing Dataset Shift

Hala Abdelkader
{"title":"Towards Robust Production Machine Learning Systems: Managing Dataset Shift","authors":"Hala Abdelkader","doi":"10.1145/3324884.3415281","DOIUrl":null,"url":null,"abstract":"The advances in machine learning (ML) have stimulated the integration of their capabilities into software systems. However, there is a tangible gap between software engineering and machine learning practices, that is delaying the progress of intelligent services development. Software organisations are devoting effort to adjust the software engineering processes and practices to facilitate the integration of machine learning models. Machine learning researchers as well are focusing on improving the interpretability of machine learning models to support overall system robustness. Our research focuses on bridging this gap through a methodology that evaluates the robustness of machine learning-enabled software engineering systems. In particular, this methodology will automate the evaluation of the robustness properties of software systems against dataset shift problems in ML. It will also feature a notification mechanism that facilitates the debugging of ML components.","PeriodicalId":106337,"journal":{"name":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3415281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The advances in machine learning (ML) have stimulated the integration of their capabilities into software systems. However, there is a tangible gap between software engineering and machine learning practices, that is delaying the progress of intelligent services development. Software organisations are devoting effort to adjust the software engineering processes and practices to facilitate the integration of machine learning models. Machine learning researchers as well are focusing on improving the interpretability of machine learning models to support overall system robustness. Our research focuses on bridging this gap through a methodology that evaluates the robustness of machine learning-enabled software engineering systems. In particular, this methodology will automate the evaluation of the robustness properties of software systems against dataset shift problems in ML. It will also feature a notification mechanism that facilitates the debugging of ML components.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迈向稳健的生产机器学习系统:管理数据集转移
机器学习(ML)的进步刺激了将它们的功能集成到软件系统中。然而,软件工程和机器学习实践之间存在着明显的差距,这阻碍了智能服务发展的进程。软件组织正在努力调整软件工程过程和实践,以促进机器学习模型的集成。机器学习研究人员也专注于提高机器学习模型的可解释性,以支持整个系统的鲁棒性。我们的研究重点是通过评估支持机器学习的软件工程系统的鲁棒性的方法来弥合这一差距。特别是,这种方法将自动评估软件系统对机器学习中数据集移位问题的鲁棒性。它还将具有一个通知机制,有助于机器学习组件的调试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Generating Thread-Safe Classes Automatically Anti-patterns for Java Automated Program Repair Tools Automating Just-In-Time Comment Updating Synthesizing Smart Solving Strategy for Symbolic Execution Identifying and Describing Information Seeking Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1