Classification Based on Specific Vocabulary

J. Savoy, Olena Zubaryeva
{"title":"Classification Based on Specific Vocabulary","authors":"J. Savoy, Olena Zubaryeva","doi":"10.1109/WI-IAT.2011.19","DOIUrl":null,"url":null,"abstract":"Assuming a binomial distribution for word occurrence, we propose computing a standardized Z score to define the specific vocabulary of a subset compared to that of the entire corpus. This approach is applied to weight terms characterizing a document (or a sample of texts). We then show how these Z score values can be used to derive an efficient categorization scheme. To evaluate this proposition we categorize speeches given by B. Obama as either electoral or presidential. The results tend to show that the suggested classification scheme performs better than a Support Vector Machine scheme, and a Naive Bayes classifier (10-fold cross validation).","PeriodicalId":128421,"journal":{"name":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2011.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Assuming a binomial distribution for word occurrence, we propose computing a standardized Z score to define the specific vocabulary of a subset compared to that of the entire corpus. This approach is applied to weight terms characterizing a document (or a sample of texts). We then show how these Z score values can be used to derive an efficient categorization scheme. To evaluate this proposition we categorize speeches given by B. Obama as either electoral or presidential. The results tend to show that the suggested classification scheme performs better than a Support Vector Machine scheme, and a Naive Bayes classifier (10-fold cross validation).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特定词汇的分类
假设单词出现的二项分布,我们建议计算一个标准化的Z分数来定义一个子集与整个语料库的特定词汇。这种方法应用于描述文档(或文本样本)的权重项。然后,我们将展示如何使用这些Z分数值来推导有效的分类方案。为了评价这一命题,我们将B.奥巴马的演讲分为选举演讲和总统演讲。结果表明,建议的分类方案优于支持向量机方案和朴素贝叶斯分类器(10倍交叉验证)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Slovak Blog Clustering Enhanced by Mining the Web Comments Automatic Face Annotation in News Images by Mining the Web Exploiting Additional Dimensions as Virtual Items on Top-N Recommender Systems Supporting Agent Systems in the Programming Language A Software Agent Framework for Exploiting Demand-Side Consumer Social Networks in Power Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1