Automatic Access Control Based on Face and Hand Biometrics in a Non-cooperative Context

M. N. Jahromi, Morten Bojesen Bonderup, Maryam Asadi-Aghbolaghi, Egils Avots, Kamal Nasrollahi, Sergio Escalera, S. Kasaei, T. Moeslund, G. Anbarjafari
{"title":"Automatic Access Control Based on Face and Hand Biometrics in a Non-cooperative Context","authors":"M. N. Jahromi, Morten Bojesen Bonderup, Maryam Asadi-Aghbolaghi, Egils Avots, Kamal Nasrollahi, Sergio Escalera, S. Kasaei, T. Moeslund, G. Anbarjafari","doi":"10.1109/WACVW.2018.00009","DOIUrl":null,"url":null,"abstract":"Automatic access control systems (ACS) based on the human biometrics or physical tokens are widely employed in public and private areas. Yet these systems, in their conventional forms, are restricted to active interaction from the users. In scenarios where users are not cooperating with the system, these systems are challenged. Failure in cooperation with the biometric systems might be intentional or because the users are incapable of handling the interaction procedure with the biometric system or simply forget to cooperate with it, due to for example, illness like dementia. This work introduces a challenging bimodal database, including face and hand information of the users when they approach a door to open it by its handle in a noncooperative context. We have defined two (an easy and a challenging) protocols on how to use the database. We have reported results on many baseline methods, including deep learning techniques as well as conventional methods on the database. The obtained results show the merit of the proposed database and the challenging nature of access control with non-cooperative users.","PeriodicalId":301220,"journal":{"name":"2018 IEEE Winter Applications of Computer Vision Workshops (WACVW)","volume":"376 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Winter Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW.2018.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Automatic access control systems (ACS) based on the human biometrics or physical tokens are widely employed in public and private areas. Yet these systems, in their conventional forms, are restricted to active interaction from the users. In scenarios where users are not cooperating with the system, these systems are challenged. Failure in cooperation with the biometric systems might be intentional or because the users are incapable of handling the interaction procedure with the biometric system or simply forget to cooperate with it, due to for example, illness like dementia. This work introduces a challenging bimodal database, including face and hand information of the users when they approach a door to open it by its handle in a noncooperative context. We have defined two (an easy and a challenging) protocols on how to use the database. We have reported results on many baseline methods, including deep learning techniques as well as conventional methods on the database. The obtained results show the merit of the proposed database and the challenging nature of access control with non-cooperative users.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非合作环境下基于面部和手部生物特征的自动访问控制
基于人体生物特征或物理令牌的自动门禁系统(ACS)广泛应用于公共和私人领域。然而,这些系统,在它们的传统形式中,被限制为来自用户的主动交互。在用户不与系统合作的场景中,这些系统将面临挑战。与生物识别系统的合作失败可能是故意的,也可能是因为用户无法处理与生物识别系统的交互程序,或者只是忘记了与它合作,例如由于痴呆症等疾病。这项工作引入了一个具有挑战性的双峰数据库,包括用户在非合作环境中接近门并通过门把手打开门时的面部和手部信息。我们已经定义了两个关于如何使用数据库的协议(一个简单,一个具有挑战性)。我们已经报告了许多基线方法的结果,包括深度学习技术以及数据库上的传统方法。得到的结果表明了所提出的数据库的优点,以及非合作用户访问控制的挑战性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Calorific Expenditure Estimation Using Deep Convolutional Network Features Evaluating a Convolutional Neural Network on Short-Wave Infra-Red Images Facial Attributes Guided Deep Sketch-to-Photo Synthesis Learning Visual Engagement for Trauma Recovery A Multi-task Convolutional Neural Network for Joint Iris Detection and Presentation Attack Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1