Methodology for partial fingerprint enrollment and authentication on mobile devices

S. Mathur, Ankit Vjay, Jidnya Shah, Shreyasi Das, Adil Malla
{"title":"Methodology for partial fingerprint enrollment and authentication on mobile devices","authors":"S. Mathur, Ankit Vjay, Jidnya Shah, Shreyasi Das, Adil Malla","doi":"10.1109/ICB.2016.7550093","DOIUrl":null,"url":null,"abstract":"The reduced platen area of fingerprint sensors in mobile devices results in acquisition of partial fingerprints. Existing fingerprint enrollment schemes for small area sensors are tedious and have an uncertainty of complete finger coverage during scanning. We propose a novel enrollment protocol for small area rectangular sensors that maximizes finger coverage within few scans. Also, due to presence of insufficient minutiae, accuracy of minutiae-based fingerprint matching algorithms degrades significantly when applied for partial-to-partial fingerprint matching. Instead, we propose a matching algorithm that utilizes multi-scale texture descriptors, namely, Accelerated KAZE (A-KAZE). Experiments on FVC 2000, 2002 and in-house databases indicate that A-KAZE gives promising accuracy. On a Samsung Galaxy Note II N7100 (Quad-core 1.6 GHz, 2GB RAM), average time taken for template generation and 1×1 matching of fingerprint of size 237×117 pixels is 86 ms and 19 ms respectively.","PeriodicalId":308715,"journal":{"name":"2016 International Conference on Biometrics (ICB)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2016.7550093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

The reduced platen area of fingerprint sensors in mobile devices results in acquisition of partial fingerprints. Existing fingerprint enrollment schemes for small area sensors are tedious and have an uncertainty of complete finger coverage during scanning. We propose a novel enrollment protocol for small area rectangular sensors that maximizes finger coverage within few scans. Also, due to presence of insufficient minutiae, accuracy of minutiae-based fingerprint matching algorithms degrades significantly when applied for partial-to-partial fingerprint matching. Instead, we propose a matching algorithm that utilizes multi-scale texture descriptors, namely, Accelerated KAZE (A-KAZE). Experiments on FVC 2000, 2002 and in-house databases indicate that A-KAZE gives promising accuracy. On a Samsung Galaxy Note II N7100 (Quad-core 1.6 GHz, 2GB RAM), average time taken for template generation and 1×1 matching of fingerprint of size 237×117 pixels is 86 ms and 19 ms respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动设备上的部分指纹登记和认证方法
移动设备中指纹传感器的压片面积减小导致了部分指纹的采集。现有的小面积传感器指纹登记方案繁琐,且在扫描过程中存在手指完全覆盖的不确定性。我们提出了一种新的小面积矩形传感器登记协议,在几次扫描中最大化手指覆盖。此外,由于细节不足,基于细节的指纹匹配算法在进行部分到部分指纹匹配时,精度会显著下降。相反,我们提出了一种利用多尺度纹理描述符的匹配算法,即加速KAZE (a -KAZE)。在FVC 2000、2002和内部数据库上的实验表明,A-KAZE具有良好的精度。在三星Galaxy Note II N7100(四核1.6 GHz, 2GB RAM)上,尺寸为237×117像素的指纹模板生成和1×1匹配的平均时间分别为86 ms和19 ms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Latent fingerprint segmentation based on linear density Experimental results on multi-modal fusion of EEG-based personal verification algorithms Transferring deep representation for NIR-VIS heterogeneous face recognition TripleA: Accelerated accuracy-preserving alignment for iris-codes Reliable face anti-spoofing using multispectral SWIR imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1