Cross-lingual document similarity

A. Muhic, Jan Rupnik, P. Skraba
{"title":"Cross-lingual document similarity","authors":"A. Muhic, Jan Rupnik, P. Skraba","doi":"10.2498/iti.2012.0467","DOIUrl":null,"url":null,"abstract":"In this paper we investigated how to compute similarities between documents written in different languages based on a weekly aligned multi-lingual collection of documents. Computing the cross-lingual similarities is based on an aligned set of basis vectors obtained by either latent semantic indexing or the k-means algorithm on an aligned multi-lingual corpus. We evaluated the methods on two data sets: Wikipedia and European Parliament Proceedings Parallel Corpus.","PeriodicalId":135105,"journal":{"name":"Proceedings of the ITI 2012 34th International Conference on Information Technology Interfaces","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ITI 2012 34th International Conference on Information Technology Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2498/iti.2012.0467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper we investigated how to compute similarities between documents written in different languages based on a weekly aligned multi-lingual collection of documents. Computing the cross-lingual similarities is based on an aligned set of basis vectors obtained by either latent semantic indexing or the k-means algorithm on an aligned multi-lingual corpus. We evaluated the methods on two data sets: Wikipedia and European Parliament Proceedings Parallel Corpus.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨语言文档相似度
在本文中,我们研究了如何基于每周对齐的多语言文档集合计算用不同语言编写的文档之间的相似性。跨语言相似度的计算基于一组对齐的基向量,这些基向量是通过潜在语义索引或k-means算法在对齐的多语言语料库上获得的。我们在两个数据集上评估了这些方法:维基百科和欧洲议会会议并行语料库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Risk management and business credit scoring GAAP. genetic algorithm with auxiliary populations applied to continuous optimization problems BICIKELJ: Environmental data mining on the bicycle XML schema domain identification Acceptance of verificator by information science students
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1