{"title":"Revisiting Flipping Strategy for Learning-based Stereo Depth Estimation","authors":"Yue Li, Yueyi Zhang, Zhiwei Xiong","doi":"10.1109/VCIP53242.2021.9675450","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNNs) have been widely used for stereo depth estimation, which achieve great success in performance. In this paper, we introduce a novel flipping strategy for DNN on the stereo depth estimation task. Specifically, based on a common DNN for stereo matching, we apply the flipping operation for both input stereo images, which are further fed to the original DNN. A flipping loss function is proposed to jointly train the network with the initial loss. We apply our strategy to many representative networks in both supervised and self-supervised manners. Extensive experimental results demonstrate that our proposed strategy improves the performance of these networks.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"05 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Deep neural networks (DNNs) have been widely used for stereo depth estimation, which achieve great success in performance. In this paper, we introduce a novel flipping strategy for DNN on the stereo depth estimation task. Specifically, based on a common DNN for stereo matching, we apply the flipping operation for both input stereo images, which are further fed to the original DNN. A flipping loss function is proposed to jointly train the network with the initial loss. We apply our strategy to many representative networks in both supervised and self-supervised manners. Extensive experimental results demonstrate that our proposed strategy improves the performance of these networks.