{"title":"Global and local quality measures for NIR iris video","authors":"Jinyu Zuo, N. Schmid","doi":"10.1109/CVPRW.2009.5204310","DOIUrl":null,"url":null,"abstract":"In the field of iris-based recognition, evaluation of quality of images has a number of important applications. These include image acquisition, enhancement, and data fusion. Iris image quality metrics designed for these applications are used as figures of merit to quantify degradations or improvements in iris images due to various image processing operations. This paper elaborates on the factors and introduces new global and local factors that can be used to evaluate iris video and image quality. The main contributions of the paper are as follows. (1) A fast global quality evaluation procedure for selecting the best frames from a video or an image sequence is introduced. (2) A number of new local quality measures for the iris biometrics are introduced. The performance of the individual quality measures is carefully analyzed. Since performance of iris recognition systems is evaluated in terms of the distributions of matching scores and recognition probability of error, from a good iris image quality metric it is also expected that its performance is linked to the recognition performance of the biometric recognition system.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"355 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
In the field of iris-based recognition, evaluation of quality of images has a number of important applications. These include image acquisition, enhancement, and data fusion. Iris image quality metrics designed for these applications are used as figures of merit to quantify degradations or improvements in iris images due to various image processing operations. This paper elaborates on the factors and introduces new global and local factors that can be used to evaluate iris video and image quality. The main contributions of the paper are as follows. (1) A fast global quality evaluation procedure for selecting the best frames from a video or an image sequence is introduced. (2) A number of new local quality measures for the iris biometrics are introduced. The performance of the individual quality measures is carefully analyzed. Since performance of iris recognition systems is evaluated in terms of the distributions of matching scores and recognition probability of error, from a good iris image quality metric it is also expected that its performance is linked to the recognition performance of the biometric recognition system.