Performance Improvement of Gaussian Filter using SIMD Technology

Maryam Moradifar, A. Shahbahrami
{"title":"Performance Improvement of Gaussian Filter using SIMD Technology","authors":"Maryam Moradifar, A. Shahbahrami","doi":"10.1109/MVIP49855.2020.9116883","DOIUrl":null,"url":null,"abstract":"Denoising is an important process before applying other post-processing techniques on medical images. To obtain better quality images many denoising approaches have been introduced. Gaussian filter is a spatial domain filter, which is proper to blur and to remove noise from images. Since the Gaussian filter modifies the input signal by convolution with a Gaussian function it is a computationally intensive algorithm. Hence to enhance the performance of the algorithm, it is better to perform two 1-D convolution operations instead of one 2-D convolution operation and then parallelize it. In this paper in order to increase the performance of 1-D convolution operation, we exploit both Data- and Thread-Level Parallelism using parallel programming models such as Intrinsic Programming Model, Compiler's Automatic Vectorization and Open Multi-Processing. The experimental results were shown that the performance of our implementations is much higher than other approaches Performance improvements of Multi-threaded version of all implementations are significantly improved compared to single-core implementations, and a speedup of 52.33x obtained over the optimal scalar implementation.","PeriodicalId":255375,"journal":{"name":"2020 International Conference on Machine Vision and Image Processing (MVIP)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVIP49855.2020.9116883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Denoising is an important process before applying other post-processing techniques on medical images. To obtain better quality images many denoising approaches have been introduced. Gaussian filter is a spatial domain filter, which is proper to blur and to remove noise from images. Since the Gaussian filter modifies the input signal by convolution with a Gaussian function it is a computationally intensive algorithm. Hence to enhance the performance of the algorithm, it is better to perform two 1-D convolution operations instead of one 2-D convolution operation and then parallelize it. In this paper in order to increase the performance of 1-D convolution operation, we exploit both Data- and Thread-Level Parallelism using parallel programming models such as Intrinsic Programming Model, Compiler's Automatic Vectorization and Open Multi-Processing. The experimental results were shown that the performance of our implementations is much higher than other approaches Performance improvements of Multi-threaded version of all implementations are significantly improved compared to single-core implementations, and a speedup of 52.33x obtained over the optimal scalar implementation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用SIMD技术改进高斯滤波器的性能
去噪是医学图像其他后处理技术应用之前的重要步骤。为了获得更好的图像质量,引入了许多去噪方法。高斯滤波器是一种空间域滤波器,适合于图像的模糊处理和去噪。由于高斯滤波器通过与高斯函数的卷积来修改输入信号,因此它是一种计算量很大的算法。因此,为了提高算法的性能,最好执行两次一维卷积操作,而不是一次二维卷积操作,然后并行化。为了提高一维卷积运算的性能,我们利用并行编程模型如内在编程模型、编译器自动向量化和开放多处理来开发数据级和线程级并行性。实验结果表明,所有实现的多线程版本的性能都比单核实现有了明显的提高,比最优标量实现的速度提高了52.33倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Offline Handwritten Signature Verification and Recognition Based on Deep Transfer Learning A High-Accuracy, Cost-Effective People Counting Solution Based on Visual Depth Data Source Camera Identification Using WLBP Descriptor Convolutional Neural Network for Building Extraction from High-Resolution Remote Sensing Images PCB Defect Detection Using Denoising Convolutional Autoencoders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1