Modeling motion flow using tensor dynamic textures

Bingyin Zhou, Qingyun Ren, Ming Lu
{"title":"Modeling motion flow using tensor dynamic textures","authors":"Bingyin Zhou, Qingyun Ren, Ming Lu","doi":"10.1109/ICALIP.2016.7846642","DOIUrl":null,"url":null,"abstract":"As a family of visual patterns in moving scenes with certain temporal regularity, dynamic textures are powerful visual cues for people to understand things; hence, effective models are needed for relevant applications. Considering that image sequences are really tensor time series, this paper proposes a tensor dynamic texture model to represent dynamic texture videos, and a sub-optimal algorithm to estimate the model parameters. Our tensor-based method can capture multiple interactions and essential structures in videos. Experimental results on dynamic texture synthesis show that the proposed method not only achieved a better visual quality, but also a smaller model size and a less time cost. The maximum PSNR gain achieves 2.36 dB, and the maximum model size reduction achieves 49.68%.","PeriodicalId":184170,"journal":{"name":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALIP.2016.7846642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a family of visual patterns in moving scenes with certain temporal regularity, dynamic textures are powerful visual cues for people to understand things; hence, effective models are needed for relevant applications. Considering that image sequences are really tensor time series, this paper proposes a tensor dynamic texture model to represent dynamic texture videos, and a sub-optimal algorithm to estimate the model parameters. Our tensor-based method can capture multiple interactions and essential structures in videos. Experimental results on dynamic texture synthesis show that the proposed method not only achieved a better visual quality, but also a smaller model size and a less time cost. The maximum PSNR gain achieves 2.36 dB, and the maximum model size reduction achieves 49.68%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用张量动态纹理建模运动流
动态纹理作为运动场景中具有一定时间规律性的视觉图案家族,是人们理解事物的有力视觉线索;因此,相关应用需要有效的模型。考虑到图像序列实际上是张量时间序列,本文提出了一种张量动态纹理模型来表示动态纹理视频,并提出了一种次优算法来估计模型参数。我们的基于张量的方法可以捕获视频中的多个交互和基本结构。动态纹理合成实验结果表明,该方法不仅获得了更好的视觉质量,而且模型尺寸更小,时间成本更低。最大PSNR增益达到2.36 dB,最大模型尺寸减小达到49.68%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of student activities trajectory and design of attendance management based on internet of things An RFID indoor positioning system by using Particle Swarm Optimization-based Artificial Neural Network Comparison of sparse-view CT image reconstruction algorithms Face recognition based on LBPH and regression of Local Binary features Research and application of dynamic and interactive data visualization based on D3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1