PoliTeam @ AMI: Improving Sentence Embedding Similarity with Misogyny Lexicons for Automatic Misogyny Identification in Italian Tweets

Giuseppe Attanasio, Eliana Pastor
{"title":"PoliTeam @ AMI: Improving Sentence Embedding Similarity with Misogyny Lexicons for Automatic Misogyny Identification in Italian Tweets","authors":"Giuseppe Attanasio, Eliana Pastor","doi":"10.4000/BOOKS.AACCADEMIA.6807","DOIUrl":null,"url":null,"abstract":"We present a multi-agent classification solution for identifying misogynous and aggressive content in Italian tweets. A first agent uses modern Sentence Embedding techniques to encode tweets and a SVM classifier to produce initial labels. A second agent, based on TF-IDF and Misogyny Italian lexicons, is jointly adopted to improve the first agent on uncertain predictions. We evaluate our approach in the Automatic Misogyny Identification Shared Task of the EVALITA 2020 campaign. Results show that TF-IDF and lexicons effectively improve the supervised agent trained on sentence embeddings. Italiano. Presentiamo un classificatore multi-agente per identificare tweet italiani misogini e aggressivi. Un primo agente codifica i tweet con Sentence Embedding e una SVM per produrre le etichette iniziali. Un secondo agente, basato su TF-IDF e lessici misogini, è usato per coadiuvare il primo agente nelle predizioni incerte. Applichiamo la soluzione al task AMI della campagna EVALITA 2020. I risultati mostrano che TF-IDF e i lessici migliorano le performance del primo agente addestrato su sentence embedding.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.6807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We present a multi-agent classification solution for identifying misogynous and aggressive content in Italian tweets. A first agent uses modern Sentence Embedding techniques to encode tweets and a SVM classifier to produce initial labels. A second agent, based on TF-IDF and Misogyny Italian lexicons, is jointly adopted to improve the first agent on uncertain predictions. We evaluate our approach in the Automatic Misogyny Identification Shared Task of the EVALITA 2020 campaign. Results show that TF-IDF and lexicons effectively improve the supervised agent trained on sentence embeddings. Italiano. Presentiamo un classificatore multi-agente per identificare tweet italiani misogini e aggressivi. Un primo agente codifica i tweet con Sentence Embedding e una SVM per produrre le etichette iniziali. Un secondo agente, basato su TF-IDF e lessici misogini, è usato per coadiuvare il primo agente nelle predizioni incerte. Applichiamo la soluzione al task AMI della campagna EVALITA 2020. I risultati mostrano che TF-IDF e i lessici migliorano le performance del primo agente addestrato su sentence embedding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
politteam @ AMI:提高句子嵌入与厌女词汇的相似度,用于意大利语推文中的厌女自动识别
我们提出了一个多智能体分类解决方案,用于识别意大利语推文中的厌女和攻击性内容。第一智能体使用现代句子嵌入技术对tweet进行编码,并使用支持向量机分类器生成初始标签。基于TF-IDF和Misogyny意大利语词汇的第二个代理被联合采用,以改进第一个代理对不确定预测的处理。我们在EVALITA 2020运动的自动厌女症识别共享任务中评估了我们的方法。结果表明,TF-IDF和词典有效地改善了句子嵌入训练的监督智能体。意大利语。呈现一种非分类的、多代理的、每条身份推文的意大利式厌女攻击。利用支持向量机对推文和句子嵌入的初始化问题进行求解。第二剂,basato su TF-IDF,较弱的misogini, è usato per codiuva,第一剂,较弱的预测。应用解决方案的所有任务AMI della campagna EVALITA 2020。结果表明,TF-IDF算法在句子嵌入中具有较低的性能和较低的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIACR-Ita @ EVALITA2020: Overview of the EVALITA2020 Diachronic Lexical Semantics (DIACR-Ita) Task QMUL-SDS @ DIACR-Ita: Evaluating Unsupervised Diachronic Lexical Semantics Classification in Italian (short paper) By1510 @ HaSpeeDe 2: Identification of Hate Speech for Italian Language in Social Media Data (short paper) HaSpeeDe 2 @ EVALITA2020: Overview of the EVALITA 2020 Hate Speech Detection Task KIPoS @ EVALITA2020: Overview of the Task on KIParla Part of Speech Tagging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1