C. Bianchini, A. Torreggiani, M. Davoli, Danilo David, Andrea Sala, A. Bellini
{"title":"High Air Gap Linear Induction Motor Fast Simulation","authors":"C. Bianchini, A. Torreggiani, M. Davoli, Danilo David, Andrea Sala, A. Bellini","doi":"10.1109/IEMDC47953.2021.9449560","DOIUrl":null,"url":null,"abstract":"The linear induction motor is mainly adopted for traction or motion transmission applications. Some advantages of linear induction motors are: a direct electromagnetic thrust propulsion (no need of mechanical transmissions), low maintenance costs and precision linear positioning; on the other hand, this motor topology has low power factor and efficiency, longitudinal and transversal edge-effect. This paper proposes a novel fast simulation method to evaluate the performance and machine parameters of a double-sided linear induction motor via 2-D finite element analysis considering both a magnetic time-harmonic and magnetostatic problems. The thrust force is computed tuning the secondary aluminum plate resistivity as a function of the path length of the induced eddy currents due to the fundamental of the air gap magnetomotive force. The proposed method has been verified via several 2-D finite element simulations and validated with experimental tests.","PeriodicalId":106489,"journal":{"name":"2021 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC47953.2021.9449560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The linear induction motor is mainly adopted for traction or motion transmission applications. Some advantages of linear induction motors are: a direct electromagnetic thrust propulsion (no need of mechanical transmissions), low maintenance costs and precision linear positioning; on the other hand, this motor topology has low power factor and efficiency, longitudinal and transversal edge-effect. This paper proposes a novel fast simulation method to evaluate the performance and machine parameters of a double-sided linear induction motor via 2-D finite element analysis considering both a magnetic time-harmonic and magnetostatic problems. The thrust force is computed tuning the secondary aluminum plate resistivity as a function of the path length of the induced eddy currents due to the fundamental of the air gap magnetomotive force. The proposed method has been verified via several 2-D finite element simulations and validated with experimental tests.