Fast Monte-Carlo algorithms for finding low-rank approximations

A. Frieze, R. Kannan, S. Vempala
{"title":"Fast Monte-Carlo algorithms for finding low-rank approximations","authors":"A. Frieze, R. Kannan, S. Vempala","doi":"10.1109/SFCS.1998.743487","DOIUrl":null,"url":null,"abstract":"In several applications, the data consists of an m/spl times/n matrix A and it is of interest to find an approximation D of a specified rank k to A where, k is much smaller than m and n. Traditional methods like the Singular Value Decomposition (SVD) help us find the \"best\" such approximation. However, these methods take time polynomial in m, n which is often too prohibitive. In this paper, we develop an algorithm which is qualitatively faster provided we may sample the entries of the matrix according to a natural probability distribution. Indeed, in the applications such sampling is possible. Our main result is that we can find the description of a matrix D* of rank at most k so that /spl par/A-D*/spl par//sub F//spl les/min/D,rank(D)/spl les/k/spl par/A-D/spl par//sub F/+/spl epsiv//spl par/A/spl par//sub F/ holds with probability at least 1-/spl delta/. (For any matrix M, /spl par/M/spl par//sub F//sup 2/ denotes the sum of the squares of all the entries of M.) The algorithm takes time polynomial in k, 1//spl epsiv/, log(1//spl delta/) only, independent of m, n.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"774","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 774

Abstract

In several applications, the data consists of an m/spl times/n matrix A and it is of interest to find an approximation D of a specified rank k to A where, k is much smaller than m and n. Traditional methods like the Singular Value Decomposition (SVD) help us find the "best" such approximation. However, these methods take time polynomial in m, n which is often too prohibitive. In this paper, we develop an algorithm which is qualitatively faster provided we may sample the entries of the matrix according to a natural probability distribution. Indeed, in the applications such sampling is possible. Our main result is that we can find the description of a matrix D* of rank at most k so that /spl par/A-D*/spl par//sub F//spl les/min/D,rank(D)/spl les/k/spl par/A-D/spl par//sub F/+/spl epsiv//spl par/A/spl par//sub F/ holds with probability at least 1-/spl delta/. (For any matrix M, /spl par/M/spl par//sub F//sup 2/ denotes the sum of the squares of all the entries of M.) The algorithm takes time polynomial in k, 1//spl epsiv/, log(1//spl delta/) only, independent of m, n.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
寻找低秩近似的快速蒙特卡罗算法
在一些应用中,数据由一个m/spl乘以/n的矩阵A组成,找到一个特定秩k到A的近似D是很有趣的,其中k远远小于m和n。传统的方法,如奇异值分解(SVD)帮助我们找到“最佳”这样的近似。然而,这些方法需要m的时间多项式,这通常是令人望而却步的。在本文中,我们开发了一种定性更快的算法,只要我们可以根据自然概率分布对矩阵的条目进行采样。实际上,在应用程序中,这样的采样是可能的。我们的主要结果是,我们可以找到一个矩阵D*的描述,使得/spl par/ a -D*/spl par//sub F//spl les/min/D,秩(D)/spl les/k/spl par/ a -D/spl par//sub F/+/spl epsiv//spl par/ a/ spl par//sub F/的概率至少为1-/spl delta/。(对于任意矩阵M, /spl par/M/spl par//sub F//sup 2/表示M中所有元素的平方和)该算法只需要k的时间多项式,1//spl δ /, log(1//spl δ /),与m, n无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Faster and simpler algorithms for multicommodity flow and other fractional packing problems Lower bounds for zero knowledge on the Internet Algorithms to tile the infinite grid with finite clusters Recommendation systems: a probabilistic analysis A characterization of NC by tree recurrence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1