Image Reconstruction from Incomplete Frequency Information Using Yang Method

Ratri Dwi Atmaja, A. B. Suksmono, D. Danudirdjo, Taufiq Hidayat
{"title":"Image Reconstruction from Incomplete Frequency Information Using Yang Method","authors":"Ratri Dwi Atmaja, A. B. Suksmono, D. Danudirdjo, Taufiq Hidayat","doi":"10.1109/APWiMob51111.2021.9435215","DOIUrl":null,"url":null,"abstract":"In many applications, an incomplete measurement case aims to obtain the desired original signal. However, the limited measured signal causes the predicted signal not to be the same as the original signal. A reconstruction technique is needed to improve the predicted signal. In this paper, we apply the Yang method for signal reconstruction from incomplete measurement, i.e. image reconstruction from incomplete frequency information. Low-high resolution patches of training images are learned to produce an overcomplete dictionary. Then the overcomplete dictionary is used to predict high-resolution patches on the testing images. Each testing images are targeted to reach the smallest RMSE. To obtain the smallest RMSE, each testing images have different conditions of variables, coming from the iteration number, the number of training images, and patch factor value. 0.3512 is the greatest RMSE improvement when comparing the smallest RMSE to the RMSE of the dirty image.","PeriodicalId":325270,"journal":{"name":"2021 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob)","volume":"331 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWiMob51111.2021.9435215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In many applications, an incomplete measurement case aims to obtain the desired original signal. However, the limited measured signal causes the predicted signal not to be the same as the original signal. A reconstruction technique is needed to improve the predicted signal. In this paper, we apply the Yang method for signal reconstruction from incomplete measurement, i.e. image reconstruction from incomplete frequency information. Low-high resolution patches of training images are learned to produce an overcomplete dictionary. Then the overcomplete dictionary is used to predict high-resolution patches on the testing images. Each testing images are targeted to reach the smallest RMSE. To obtain the smallest RMSE, each testing images have different conditions of variables, coming from the iteration number, the number of training images, and patch factor value. 0.3512 is the greatest RMSE improvement when comparing the smallest RMSE to the RMSE of the dirty image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于不完全频率信息的图像重构
在许多应用中,不完全测量的目的是获得所需的原始信号。然而,有限的测量信号导致预测信号与原始信号不相同。需要一种重构技术来改善预测信号。本文将杨氏方法应用于不完全测量的信号重构,即不完全频率信息的图像重构。通过学习低分辨率的训练图像片段来生成一个过完整的字典。然后使用过完备字典预测测试图像上的高分辨率斑块。每个测试图像的目标是达到最小的RMSE。为了获得最小的RMSE,每个测试图像具有不同条件的变量,分别来自迭代次数、训练图像数量和patch因子值。当将最小的RMSE与脏图像的RMSE进行比较时,0.3512是最大的RMSE改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Effect of Duration Heteroscedasticity to the Bottleneck in Business Process Discovered by Inductive Miner Algorithm Performance Evaluation of XGS-PON Optical Network Termination for Mobile Backhaul IoT Resiliency through Edge-located Container-based Virtualization and SDN Detection of the Key Actor of Issues Spreading Based on Social Network Analysis in Twitter Social Media Unsupervised Method for 3D Brain Magnetic Resonance Image Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1