Hierarchical design of electro-hydraulic actuator control for vehicle dynamic purposes

Balázs Varga, B. Németh, P. Gáspár
{"title":"Hierarchical design of electro-hydraulic actuator control for vehicle dynamic purposes","authors":"Balázs Varga, B. Németh, P. Gáspár","doi":"10.1109/ECC.2014.6862427","DOIUrl":null,"url":null,"abstract":"The paper proposes a hierarchical control design of an electro-hydraulic actuator, which is incorporated in the active anti-roll bars. The aim of the control system is to generate a reference torque, which is required by the vehicle dynamic control. The control-oriented model of the actuator is formulated in two subsystems. The upper-level hydromotor is described in a linear form, while the lower-level spool valve is a polynomial system. These subsystems require different control strategies. At the upper-level a Linear Parameter Varying control is used to guarantee performance specifications. At the lower-level a Control Lyapunov Function-based algorithm, which creates discrete control input values of the valve, is proposed. The interaction between the two subsystems is guaranteed by the spool displacement, which is control input for the upper-level and must be tracked by the lower-level control. The spool displacement has physical constraints, which must also be incorporated into the control design. The operation of the actuator control system is illustrated through a simulation example.","PeriodicalId":251538,"journal":{"name":"2014 European Control Conference (ECC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECC.2014.6862427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The paper proposes a hierarchical control design of an electro-hydraulic actuator, which is incorporated in the active anti-roll bars. The aim of the control system is to generate a reference torque, which is required by the vehicle dynamic control. The control-oriented model of the actuator is formulated in two subsystems. The upper-level hydromotor is described in a linear form, while the lower-level spool valve is a polynomial system. These subsystems require different control strategies. At the upper-level a Linear Parameter Varying control is used to guarantee performance specifications. At the lower-level a Control Lyapunov Function-based algorithm, which creates discrete control input values of the valve, is proposed. The interaction between the two subsystems is guaranteed by the spool displacement, which is control input for the upper-level and must be tracked by the lower-level control. The spool displacement has physical constraints, which must also be incorporated into the control design. The operation of the actuator control system is illustrated through a simulation example.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向车辆动力的电液作动器控制层次设计
提出了一种结合主动防倾杆的电液执行器的分层控制设计方法。控制系统的目的是产生车辆动态控制所需的参考转矩。在两个子系统中建立了面向控制的执行器模型。上层液力马达采用线性形式描述,下层滑阀采用多项式系统描述。这些子系统需要不同的控制策略。在上层使用线性参数变化控制来保证性能规格。在底层,提出了一种基于控制李雅普诺夫函数的算法,该算法创建了阀的离散控制输入值。两个子系统之间的交互由阀芯位移保证,阀芯位移是上层控制的输入,必须由下层控制跟踪。阀芯位移有物理限制,这也必须纳入控制设计。通过仿真算例说明了作动器控制系统的工作原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robustness under saturated feedback: Strong iISS for a class of nonlinear systems Least squares end performance experiment design in multicarrier systems: The sparse preamble case Multi-model, multi-objective tuning of fixed-structure controllers Control systems on three-dimensional lie groups On solving periodic ℋ2-optimal fault detection and isolation problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1