AspectDroid: Android App Analysis System

Aisha I. Ali-Gombe, Irfan Ahmed, G. Richard, Vassil Roussev
{"title":"AspectDroid: Android App Analysis System","authors":"Aisha I. Ali-Gombe, Irfan Ahmed, G. Richard, Vassil Roussev","doi":"10.1145/2857705.2857739","DOIUrl":null,"url":null,"abstract":"The growing threat to user privacy related to Android applications (apps) has tremendously increased the need for more reliable and accessible app analysis systems. This paper presents AspectDroid, an application-level system designed to investigate Android applications for possible unwanted activities. AspectDroid is comprised of app instrumentation, automated testing and containment systems. By using static bytecode instrumentation, The growing threat to user privacy related to Android applications (apps) has tremendously increased the need for more reliable and accessible app analysis systems. This paper presents AspectDroid, an application-level system designed to investigate Android applications for possible unwanted activities. AspectDroid is comprised of app instrumentation, automated testing and containment systems. By using static bytecode instrumentation, AspectDroid weaves monitoring code into an existing application and provides data flow and sensitive API usage as well as dynamic instrumentation capabilities. The newly repackaged app is then executed either manually or via an automated testing module. Finally, the flexible containment provided by AspectDroid adds a layer of protection so that malicious activities can be prevented from affecting other devices. The accuracy score of AspectDroid when tested on 105 DroidBench corpus shows it can detect tagged data with 95.29\\%. We further tested our system on 100 real malware families from the Drebin dataset \\cite{drebin2014}. The result of our analysis showed AspectDroid incurs approximately 1MB average total memory size overhead and 5.9\\% average increase in CPU-usage.","PeriodicalId":377412,"journal":{"name":"Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2857705.2857739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

The growing threat to user privacy related to Android applications (apps) has tremendously increased the need for more reliable and accessible app analysis systems. This paper presents AspectDroid, an application-level system designed to investigate Android applications for possible unwanted activities. AspectDroid is comprised of app instrumentation, automated testing and containment systems. By using static bytecode instrumentation, The growing threat to user privacy related to Android applications (apps) has tremendously increased the need for more reliable and accessible app analysis systems. This paper presents AspectDroid, an application-level system designed to investigate Android applications for possible unwanted activities. AspectDroid is comprised of app instrumentation, automated testing and containment systems. By using static bytecode instrumentation, AspectDroid weaves monitoring code into an existing application and provides data flow and sensitive API usage as well as dynamic instrumentation capabilities. The newly repackaged app is then executed either manually or via an automated testing module. Finally, the flexible containment provided by AspectDroid adds a layer of protection so that malicious activities can be prevented from affecting other devices. The accuracy score of AspectDroid when tested on 105 DroidBench corpus shows it can detect tagged data with 95.29\%. We further tested our system on 100 real malware families from the Drebin dataset \cite{drebin2014}. The result of our analysis showed AspectDroid incurs approximately 1MB average total memory size overhead and 5.9\% average increase in CPU-usage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AspectDroid: Android应用分析系统
Android应用程序对用户隐私的威胁越来越大,这极大地增加了对更可靠和可访问的应用程序分析系统的需求。本文介绍了AspectDroid,一个应用程序级系统,旨在调查Android应用程序中可能不需要的活动。AspectDroid由应用程序仪表、自动化测试和遏制系统组成。Android应用程序(app)对用户隐私的威胁越来越大,这极大地增加了对更可靠和可访问的应用程序分析系统的需求。本文介绍了AspectDroid,一个应用程序级系统,旨在调查Android应用程序中可能不需要的活动。AspectDroid由应用程序仪表、自动化测试和遏制系统组成。通过使用静态字节码检测,AspectDroid将监控代码编织到现有的应用程序中,并提供数据流和敏感的API使用以及动态检测功能。然后手动或通过自动测试模块执行新重新打包的应用程序。最后,AspectDroid提供的灵活遏制增加了一层保护,这样就可以防止恶意活动影响其他设备。在105个DroidBench语料库上对AspectDroid的准确率进行了测试,准确率为95.29%。我们对来自Drebin数据集\cite{drebin2014}的100个真实恶意软件家族进一步测试了我们的系统。我们的分析结果显示,AspectDroid导致大约1MB的平均总内存开销和5.9%的cpu使用率平均增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interoperability of Relationship- and Role-Based Access Control DIVERSITY Auditing Security Compliance of the Virtualized Infrastructure in the Cloud: Application to OpenStack Evaluating Analysis Tools for Android Apps: Status Quo and Robustness Against Obfuscation Decoding the Mystery of the Internet of Things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1