{"title":"Device-Independent Prepare-and-Measure Quantum Key Distribution","authors":"Shih-Hsuan Chen, Che-Ming Li","doi":"10.1364/quantum.2022.qw2a.26","DOIUrl":null,"url":null,"abstract":"We propose a device-independent prepare-and-measure quantum key distribution (DIPQKD) that the transmitter prepares and sends the qubits to the receiver who de-codes by measuring the qubits. Through characterizing the used channel and ruling out any classical strategies of mimicry, one can identify the security of DIPQKD against collective attacks.","PeriodicalId":369002,"journal":{"name":"Quantum 2.0 Conference and Exhibition","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum 2.0 Conference and Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/quantum.2022.qw2a.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a device-independent prepare-and-measure quantum key distribution (DIPQKD) that the transmitter prepares and sends the qubits to the receiver who de-codes by measuring the qubits. Through characterizing the used channel and ruling out any classical strategies of mimicry, one can identify the security of DIPQKD against collective attacks.