Compressive Covariance Matrix Estimation from a Dual-Dispersive Coded Aperture Spectral Imager

Jonathan Monsalve, M. Márquez, I. Esnaola, H. Arguello
{"title":"Compressive Covariance Matrix Estimation from a Dual-Dispersive Coded Aperture Spectral Imager","authors":"Jonathan Monsalve, M. Márquez, I. Esnaola, H. Arguello","doi":"10.1109/ICIP42928.2021.9506077","DOIUrl":null,"url":null,"abstract":"Compressive covariance sampling (CCS) theory aims to recover the covariance matrix (CM) of a signal, instead of the signal itself, from a reduced set of random linear projections. Although several theoretical works demonstrate the CCS theory’s advantages in compressive spectral imaging tasks, a real optical implementation has no been proposed. Therefore, this paper proposes a compressive spectral sensing protocol for the dual-dispersive coded aperture spectral snapshot imager (DD-CASSI) to directly estimate the covariance matrix of the signal. Specifically, we propose a coded aperture design that allows recasting the vector sensing problem into matrix form, which enables to exploit the covariance matrix structure such as positive-semidefiniteness, low-rank, or Toeplitz. Additionally, a low-rank approximation of the image is reconstructed using a Principal Components Analysis (PCA) based method. In order to test the precision of the reconstruction, some spectral signatures of the image are captured with a spectrometer and compared with those obtained in the reconstruction using the covariance matrix. Results show the reconstructed spectrum is accurate with a spectral angle mapper (SAM) of less than 14°. RGB image composites of the spectral image also provide evidence of a correct color reconstruction.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Compressive covariance sampling (CCS) theory aims to recover the covariance matrix (CM) of a signal, instead of the signal itself, from a reduced set of random linear projections. Although several theoretical works demonstrate the CCS theory’s advantages in compressive spectral imaging tasks, a real optical implementation has no been proposed. Therefore, this paper proposes a compressive spectral sensing protocol for the dual-dispersive coded aperture spectral snapshot imager (DD-CASSI) to directly estimate the covariance matrix of the signal. Specifically, we propose a coded aperture design that allows recasting the vector sensing problem into matrix form, which enables to exploit the covariance matrix structure such as positive-semidefiniteness, low-rank, or Toeplitz. Additionally, a low-rank approximation of the image is reconstructed using a Principal Components Analysis (PCA) based method. In order to test the precision of the reconstruction, some spectral signatures of the image are captured with a spectrometer and compared with those obtained in the reconstruction using the covariance matrix. Results show the reconstructed spectrum is accurate with a spectral angle mapper (SAM) of less than 14°. RGB image composites of the spectral image also provide evidence of a correct color reconstruction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双色散编码孔径光谱成像仪的压缩协方差矩阵估计
压缩协方差采样(CCS)理论旨在从一组简化的随机线性投影中恢复信号的协方差矩阵(CM),而不是信号本身。尽管一些理论工作证明了CCS理论在压缩光谱成像任务中的优势,但尚未提出真正的光学实现。为此,本文针对双色散编码孔径光谱快照成像仪(DD-CASSI)提出了一种压缩光谱感知协议,直接估计信号的协方差矩阵。具体来说,我们提出了一种编码孔径设计,允许将矢量传感问题重新转换为矩阵形式,从而能够利用协方差矩阵结构,如正半确定、低秩或Toeplitz。此外,使用基于主成分分析(PCA)的方法重建图像的低秩近似。为了检验重建的精度,用光谱仪捕获了图像的一些光谱特征,并利用协方差矩阵与重建得到的光谱特征进行了比较。结果表明,在光谱角度小于14°的情况下,重建光谱精度较高。RGB图像的复合光谱图像也提供了正确的色彩重建证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Color Mismatch Correction In Stereoscopic 3d Images Weakly-Supervised Multiple Object Tracking Via A Masked Center Point Warping Loss A Parameter Efficient Multi-Scale Capsule Network Few Shot Learning For Infra-Red Object Recognition Using Analytically Designed Low Level Filters For Data Representation An Enhanced Reference Structure For Reference Picture Resampling (RPR) In VVC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1