Balancing inverted pendulum cart on inclines using accelerometers

Cole Woods, V. Vikas
{"title":"Balancing inverted pendulum cart on inclines using accelerometers","authors":"Cole Woods, V. Vikas","doi":"10.1115/1.4052712","DOIUrl":null,"url":null,"abstract":"\n The balance of inverted pendulum on inclined surfaces is the precursor to their control in unstructured environments. Researchers have devised control algorithms with feedback from contact (encoders - placed at the pendulum joint) and non-contact (gyroscopes, tilt) sensors. We present feedback control of Inverted Pendulum Cart (IPC) on variable inclines using non-contact sensors and a modified error function. The system is in the state of equilibrium when it is not accelerating and not falling over (rotational equilibrium). This is achieved when the pendulum is aligned along the gravity vector. The control feedback is obtained from non-contact sensors comprising of a pair of accelerometers placed on the inverted pendulum and one on the cart. The proposed modified error function is composed of the dynamic (non-gravity) acceleration of the pendulum and the velocity of the cart. We prove that the system is in equilibrium when the modified error is zero. We present algorithm to calculate the dynamic acceleration and angle of the pendulum, and incline angle using accelerometer readings. Here, the cart velocity and acceleration are assumed to be proportional to the motor angular velocity and acceleration. Thereafter, we perform simulation using noisy sensors to illustrate the balance of IPC on surfaces with unknown inclination angles using PID feedback controller with saturated motor torque, including valley profile that resembles a downhill, flat and uphill combination. The successful control of the system using the proposed modified error function and accelerometer feedback argues for future design of controllers for unstructured and unknown environments using all-accelerometer feedback.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Letters in Dynamic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4052712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The balance of inverted pendulum on inclined surfaces is the precursor to their control in unstructured environments. Researchers have devised control algorithms with feedback from contact (encoders - placed at the pendulum joint) and non-contact (gyroscopes, tilt) sensors. We present feedback control of Inverted Pendulum Cart (IPC) on variable inclines using non-contact sensors and a modified error function. The system is in the state of equilibrium when it is not accelerating and not falling over (rotational equilibrium). This is achieved when the pendulum is aligned along the gravity vector. The control feedback is obtained from non-contact sensors comprising of a pair of accelerometers placed on the inverted pendulum and one on the cart. The proposed modified error function is composed of the dynamic (non-gravity) acceleration of the pendulum and the velocity of the cart. We prove that the system is in equilibrium when the modified error is zero. We present algorithm to calculate the dynamic acceleration and angle of the pendulum, and incline angle using accelerometer readings. Here, the cart velocity and acceleration are assumed to be proportional to the motor angular velocity and acceleration. Thereafter, we perform simulation using noisy sensors to illustrate the balance of IPC on surfaces with unknown inclination angles using PID feedback controller with saturated motor torque, including valley profile that resembles a downhill, flat and uphill combination. The successful control of the system using the proposed modified error function and accelerometer feedback argues for future design of controllers for unstructured and unknown environments using all-accelerometer feedback.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用加速度计使倒立摆小车在斜坡上保持平衡
倒立摆在倾斜表面上的平衡是倒立摆在非结构环境中控制倒立摆的前兆。研究人员设计了一种控制算法,该算法由接触式(编码器-放置在摆关节处)和非接触式(陀螺仪,倾斜)传感器反馈。采用非接触式传感器和修正误差函数,对变倾角倒立摆小车进行了反馈控制。当系统不加速不倾覆时,系统处于平衡状态(转动平衡)。这是当钟摆沿着重力矢量对齐时实现的。控制反馈由非接触式传感器获得,该传感器由一对放置在倒立摆上的加速度计和一个放置在小车上的加速度计组成。提出的修正误差函数由摆的动态(非重力)加速度和小车的速度组成。证明了修正误差为零时系统处于平衡状态。我们提出了利用加速度计的读数计算钟摆的动态加速度和角度以及倾斜角的算法。在这里,小车的速度和加速度被假设成正比的电机角速度和加速度。此后,我们使用噪声传感器进行仿真,以说明IPC在倾角未知的表面上的平衡,使用具有饱和电机扭矩的PID反馈控制器,包括类似于下坡,平坦和上坡组合的山谷剖面。利用修正误差函数和加速度计反馈对系统的成功控制,为未来采用全加速度计反馈设计非结构化和未知环境的控制器提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Some Results on the Properties of Discrete-Time LTI State-Space Systems Using Constrained Convex Optimization in Parameter Estimation of Process Dynamics with Dead Time Utilisation of Manipulator Redundancy for Torque Reduction During Force Interaction Adaptive Tracking Control of Robotic Manipulator Subjected to Actuator Saturation and Partial Loss of Effectiveness Utilisation of Manipulator Redundancy for Torque Reduction During Force Interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1