Infomorphism: Urban Planning For Renewable Energy Integration Via Simulated Energy Exchange Networks

Feng Li, A. Tsamis, K. Schell
{"title":"Infomorphism: Urban Planning For Renewable Energy Integration Via Simulated Energy Exchange Networks","authors":"Feng Li, A. Tsamis, K. Schell","doi":"10.23919/ANNSIM55834.2022.9859300","DOIUrl":null,"url":null,"abstract":"Increasing renewable energy efficiency is a crucial part of developing a sustainable city. While current Urban Building Energy Modeling frameworks have been developed for analyzing and improving urban energy efficiency, these tools have not integrated systemic optimization modeling to develop and evaluate the performance of potential urban environments from generative planning models. In this study, we present Infomorphism, a computational planning framework that joins a morphological generative process with an energy network optimization model, to explore potential planning policies and constraints associated with renewable energy integration. This paper takes Manhattan as a case study to show local energy networks that maximize the city’s overall efficiency to share local renewable energy - generated thermal and electric energy - maximize renewable energy penetration rates and minimize energy exchange costs. We show how geothermal and solar drive a future city’s collective form and infrastructure to achieve up to 74% local renewable energy integration.","PeriodicalId":374469,"journal":{"name":"2022 Annual Modeling and Simulation Conference (ANNSIM)","volume":"254 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Annual Modeling and Simulation Conference (ANNSIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ANNSIM55834.2022.9859300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Increasing renewable energy efficiency is a crucial part of developing a sustainable city. While current Urban Building Energy Modeling frameworks have been developed for analyzing and improving urban energy efficiency, these tools have not integrated systemic optimization modeling to develop and evaluate the performance of potential urban environments from generative planning models. In this study, we present Infomorphism, a computational planning framework that joins a morphological generative process with an energy network optimization model, to explore potential planning policies and constraints associated with renewable energy integration. This paper takes Manhattan as a case study to show local energy networks that maximize the city’s overall efficiency to share local renewable energy - generated thermal and electric energy - maximize renewable energy penetration rates and minimize energy exchange costs. We show how geothermal and solar drive a future city’s collective form and infrastructure to achieve up to 74% local renewable energy integration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
信息形态:通过模拟能源交换网络实现可再生能源整合的城市规划
提高可再生能源的效率是发展可持续城市的关键部分。虽然目前的城市建筑能源建模框架是为了分析和提高城市能源效率而开发的,但这些工具并没有集成系统优化建模来开发和评估来自生成规划模型的潜在城市环境的性能。在这项研究中,我们提出了Infomorphism,这是一个将形态生成过程与能源网络优化模型结合起来的计算规划框架,用于探索与可再生能源整合相关的潜在规划政策和约束。本文以曼哈顿为例,展示了最大化城市整体效率的地方能源网络,以共享当地可再生能源——产生的热能和电能——最大化可再生能源渗透率,最小化能源交换成本。我们展示了地热和太阳能如何驱动未来城市的集体形式和基础设施,以实现高达74%的当地可再生能源整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Controller Area Network Discrete-Event System Specification For Independent Node Testing Boolean Logical Operator Driven Selective Data Filtering For Large Datasets Supply Chain Simulation As A Service To Increase Adaptation Capability In Manufacturing Incremental Text Clustering Algorithm For Cloud-Based Data Management In Scientific Research Papers Shading Design For Outdoor Learning in Warm And Hot Climates Using Evolutionary Computation: A Case Study In Houston Tx.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1