{"title":"A local color descriptor for efficient scene-object recognition","authors":"E. Bigorgne, C. Achard, J. Devars","doi":"10.1109/ICIAP.2001.957049","DOIUrl":null,"url":null,"abstract":"This paper presents an effective use of local descriptors for object or scene recognition and indexing. This approach is in keeping with model-based recognition systems and consists of an extension of a standard point-to-point matching between two images. Aiming at this, we address the use of Full-Zernike moments as a reliable local characterization of the image signal. A fundamental characteristic of the used descriptors is then their ability to \"absorb\" a given set of potential image modifications. Their design calls principally for the theory of invariants. A built-in invariance to similarities allows one to manage narrow bounded perspective transformations. Moreover we provide a study of the substantial and costless contribution of the use of color information. In order to achieve photometric invariance, different types of normalization are evaluated through a model-based object recognition task.","PeriodicalId":365627,"journal":{"name":"Proceedings 11th International Conference on Image Analysis and Processing","volume":"299 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2001.957049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents an effective use of local descriptors for object or scene recognition and indexing. This approach is in keeping with model-based recognition systems and consists of an extension of a standard point-to-point matching between two images. Aiming at this, we address the use of Full-Zernike moments as a reliable local characterization of the image signal. A fundamental characteristic of the used descriptors is then their ability to "absorb" a given set of potential image modifications. Their design calls principally for the theory of invariants. A built-in invariance to similarities allows one to manage narrow bounded perspective transformations. Moreover we provide a study of the substantial and costless contribution of the use of color information. In order to achieve photometric invariance, different types of normalization are evaluated through a model-based object recognition task.