Machine learning methods for driver behaviour classification

Raymond Ghandour, A. Potams, I. Boulkaibet, B. Neji, Z. A. Barakeh, A. Karar
{"title":"Machine learning methods for driver behaviour classification","authors":"Raymond Ghandour, A. Potams, I. Boulkaibet, B. Neji, Z. A. Barakeh, A. Karar","doi":"10.1109/BioSMART54244.2021.9677801","DOIUrl":null,"url":null,"abstract":"Driver behaviour detection and evaluation is becoming an essential task for vehicle manufacturers. Driver distraction is the major cause of road accidents and infrastructure deformation. Furthermore, secondary roads accidents are mainly affected, since external distraction and pedestrian presence are higher than highways. In this paper, we propose a comparison of three machine learning classification methods to identify the driver's behaviour on secondary roads. The classification and comparison are based on the evaluation of real data.","PeriodicalId":286026,"journal":{"name":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","volume":"307 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioSMART54244.2021.9677801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Driver behaviour detection and evaluation is becoming an essential task for vehicle manufacturers. Driver distraction is the major cause of road accidents and infrastructure deformation. Furthermore, secondary roads accidents are mainly affected, since external distraction and pedestrian presence are higher than highways. In this paper, we propose a comparison of three machine learning classification methods to identify the driver's behaviour on secondary roads. The classification and comparison are based on the evaluation of real data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
驾驶员行为分类的机器学习方法
驾驶员行为检测与评估正成为汽车制造商的一项重要任务。驾驶员注意力分散是造成道路交通事故和基础设施变形的主要原因。此外,由于外部干扰和行人存在率高于高速公路,二级道路事故主要受到影响。在本文中,我们提出了三种机器学习分类方法的比较,以识别驾驶员在次要道路上的行为。分类和比较是基于对真实数据的评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Electrode Ranking Method for Single Trial Detection of EEG Error-Related Potentials Efficacy of AR Haptic Simulation for Nursing Student Education In silico study of sensitivity of polymeric prism-based surface plasmon resonance sensors based on graphene and molybdenum disulfide layers A Social Robot with Conversational Capabilities for Visitor Reception: Design and Framework MICSurv: Medical Image Clustering for Survival risk group identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1