Kung Fu Data Energy - Minimizing Communication Energy in FPGA Computations

E. Kadrić, K. Mahajan, A. DeHon
{"title":"Kung Fu Data Energy - Minimizing Communication Energy in FPGA Computations","authors":"E. Kadrić, K. Mahajan, A. DeHon","doi":"10.1109/FCCM.2014.66","DOIUrl":null,"url":null,"abstract":"The energy in FPGA computations can be dominated by data communication energy, either in the form of memory references or data movement on interconnect (e.g., over 75% of energy for single processor Gaussian Mixture Modeling, Window Filtering, and FFT). In this paper, we explore how to use data placement and parallelism to reduce communication energy. We further introduce a new architecture for embedded memories, the Continuous Hierarchy Memory (CHM), and show that it increases the opportunities to reduce energy by strategic data placement. For three common FPGA tasks in signal and image processing (Gaussian Mixture Modeling, Window Filters, and FFTs), we show that data movement energy can vary over a factor of 9. The best solutions exploit parallelism and hierarchy and are 1.8-6.0× more energy-efficient than designs that place all data in a large memory bank. With the CHM, we can get an additional 10% improvement for full voltage logic and 30-80% when operating the computation at reduced voltage.","PeriodicalId":246162,"journal":{"name":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2014.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The energy in FPGA computations can be dominated by data communication energy, either in the form of memory references or data movement on interconnect (e.g., over 75% of energy for single processor Gaussian Mixture Modeling, Window Filtering, and FFT). In this paper, we explore how to use data placement and parallelism to reduce communication energy. We further introduce a new architecture for embedded memories, the Continuous Hierarchy Memory (CHM), and show that it increases the opportunities to reduce energy by strategic data placement. For three common FPGA tasks in signal and image processing (Gaussian Mixture Modeling, Window Filters, and FFTs), we show that data movement energy can vary over a factor of 9. The best solutions exploit parallelism and hierarchy and are 1.8-6.0× more energy-efficient than designs that place all data in a large memory bank. With the CHM, we can get an additional 10% improvement for full voltage logic and 30-80% when operating the computation at reduced voltage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
功夫数据能量-最小化FPGA计算中的通信能量
FPGA计算中的能量可以由数据通信能量主导,要么以存储器引用的形式,要么以互连上的数据移动的形式(例如,单处理器高斯混合建模,窗口滤波和FFT的能量超过75%)。在本文中,我们探讨了如何使用数据放置和并行性来减少通信能量。我们进一步介绍了一种新的嵌入式存储器架构,连续层次存储器(CHM),并表明它增加了通过战略性数据放置来减少能量的机会。对于信号和图像处理中的三个常见FPGA任务(高斯混合建模,窗口滤波器和fft),我们显示数据移动能量可以变化9倍以上。最好的解决方案利用并行性和层次结构,比将所有数据放在大型内存库中的设计节能1.8-6.0倍。使用CHM,我们可以在全电压逻辑下获得10%的额外改进,在降低电压下进行计算时可以获得30-80%的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Architectural Approach to Characterizing and Eliminating Sources of Inefficiency in a Soft Processor Design High-Throughput Fixed-Point Object Detection on FPGAs A Hierarchical Memory Architecture with NoC Support for MPSoC on FPGAs System-Level Retiming and Pipelining Harmonica: An FPGA-Based Data Parallel Soft Core
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1