S. Jameson, N. Buadana, Z. Eliatim, I. Sarousi, A. Wolfman, O. Shaham
{"title":"A Q-band compact amplifier with +22 dB gain, ± 0.5 dB flatness over 40% Fractional Bandwidth in Tower 130 nm CMOS","authors":"S. Jameson, N. Buadana, Z. Eliatim, I. Sarousi, A. Wolfman, O. Shaham","doi":"10.1109/comcas52219.2021.9629106","DOIUrl":null,"url":null,"abstract":"This paper proposes an enhanced differential Cascode amplifier topology for mm-wave applications requiring wide-band amplification, flatness and compact integration area. It is here shown how to combine positive and negative feedbacks to improve drastically the stable gain of a Cascode amplifier. In addition with the use of compact 4th order transformers, a 2-stages amplifier with up to 11 dB gain per stage over 40 % fractional bandwidth and above fmax /2 is demonstrated while demonstrating as well one of the smallest core area (0.08 mm2). This topology presents currently a record small signal gain per stage at this technology node (fT/fmax of 87/90 GHz). The presented amplifier topology can be used repetitively and reliably to create wide-band amplifiers with state-of-the-art gain, flatness and return loss over small area. The circuit was realized using Tower's 130 nm CMOS.","PeriodicalId":354885,"journal":{"name":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comcas52219.2021.9629106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes an enhanced differential Cascode amplifier topology for mm-wave applications requiring wide-band amplification, flatness and compact integration area. It is here shown how to combine positive and negative feedbacks to improve drastically the stable gain of a Cascode amplifier. In addition with the use of compact 4th order transformers, a 2-stages amplifier with up to 11 dB gain per stage over 40 % fractional bandwidth and above fmax /2 is demonstrated while demonstrating as well one of the smallest core area (0.08 mm2). This topology presents currently a record small signal gain per stage at this technology node (fT/fmax of 87/90 GHz). The presented amplifier topology can be used repetitively and reliably to create wide-band amplifiers with state-of-the-art gain, flatness and return loss over small area. The circuit was realized using Tower's 130 nm CMOS.