Learning optimised representations for view-invariant gait recognition

Ning Jia, Victor Sanchez, Chang-Tsun Li
{"title":"Learning optimised representations for view-invariant gait recognition","authors":"Ning Jia, Victor Sanchez, Chang-Tsun Li","doi":"10.1109/BTAS.2017.8272769","DOIUrl":null,"url":null,"abstract":"Gait recognition can be performed without subject cooperation under harsh conditions, thus it is an important tool in forensic gait analysis, security control, and other commercial applications. One critical issue that prevents gait recognition systems from being widely accepted is the performance drop when the camera viewpoint varies between the registered templates and the query data. In this paper, we explore the potential of combining feature optimisers and representations learned by convolutional neural networks (CNN) to achieve efficient view-invariant gait recognition. The experimental results indicate that CNN learns highly discriminative representations across moderate view variations, and these representations can be further improved using view-invariant feature selectors, achieving a high matching accuracy across views.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Gait recognition can be performed without subject cooperation under harsh conditions, thus it is an important tool in forensic gait analysis, security control, and other commercial applications. One critical issue that prevents gait recognition systems from being widely accepted is the performance drop when the camera viewpoint varies between the registered templates and the query data. In this paper, we explore the potential of combining feature optimisers and representations learned by convolutional neural networks (CNN) to achieve efficient view-invariant gait recognition. The experimental results indicate that CNN learns highly discriminative representations across moderate view variations, and these representations can be further improved using view-invariant feature selectors, achieving a high matching accuracy across views.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视觉不变步态识别的学习优化表征
步态识别在恶劣条件下无需受试者配合即可完成,是法医步态分析、安全控制等商业应用的重要工具。阻碍步态识别系统被广泛接受的一个关键问题是,当摄像机视点在注册模板和查询数据之间变化时,性能会下降。在本文中,我们探索了将特征优化器和卷积神经网络(CNN)学习的表征相结合的潜力,以实现高效的视觉不变步态识别。实验结果表明,CNN在适度的视图变化中学习了高度判别的表征,并且这些表征可以使用视图不变的特征选择器进一步改进,从而在视图之间实现较高的匹配精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy evaluation of handwritten signature verification: Rethinking the random-skilled forgeries dichotomy SSERBC 2017: Sclera segmentation and eye recognition benchmarking competition Age and gender classification using local appearance descriptors from facial components Evaluation of a 3D-aided pose invariant 2D face recognition system Towards pre-alignment of near-infrared iris images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1