Experimental investigation of energy pile response for bridge deck deicing applications

C. Olgun, G. A. Bowers
{"title":"Experimental investigation of energy pile response for bridge deck deicing applications","authors":"C. Olgun, G. A. Bowers","doi":"10.1080/19375247.2016.1166314","DOIUrl":null,"url":null,"abstract":"Using energy piles is becoming an increasingly popular method for economically and efficiently accessing shallow geothermal energy for heating and cooling buildings. Energy piles are deep foundation elements integrated with fluid circulation tubes, which allow them to serve as heat exchangers in addition to their traditional role of structural support. In this study, the use of energy piles for deicing of bridge decks was investigated. Temperature-induced stresses that develop as a result of soil-pile interaction during heat exchange operations need to be evaluated for adequate design of energy piles. This paper presents the results from a series of full-scale field tests on an energy pile during bridge deck deicing operations. The resulting axial strains and stresses in the pile are presented and discussed within the context of soil-pile interaction under thermal loads. Conclusions are drawn about the behavior of energy piles and recommendations are given for their use as heat exchangers.","PeriodicalId":272645,"journal":{"name":"DFI Journal - The Journal of the Deep Foundations Institute","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DFI Journal - The Journal of the Deep Foundations Institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19375247.2016.1166314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Using energy piles is becoming an increasingly popular method for economically and efficiently accessing shallow geothermal energy for heating and cooling buildings. Energy piles are deep foundation elements integrated with fluid circulation tubes, which allow them to serve as heat exchangers in addition to their traditional role of structural support. In this study, the use of energy piles for deicing of bridge decks was investigated. Temperature-induced stresses that develop as a result of soil-pile interaction during heat exchange operations need to be evaluated for adequate design of energy piles. This paper presents the results from a series of full-scale field tests on an energy pile during bridge deck deicing operations. The resulting axial strains and stresses in the pile are presented and discussed within the context of soil-pile interaction under thermal loads. Conclusions are drawn about the behavior of energy piles and recommendations are given for their use as heat exchangers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
桥梁桥面除冰能量桩响应试验研究
利用能源桩经济高效地获取浅层地热能,用于建筑物的供暖和制冷,已成为一种日益流行的方法。能源桩是与流体循环管相结合的深层基础元件,除了传统的结构支撑作用外,还可以作为热交换器。本文对能量桩在桥面除冰中的应用进行了研究。在热交换操作过程中,由于桩土相互作用而产生的温度诱发应力需要对能源桩的适当设计进行评估。本文介绍了桥面板除冰过程中能源桩的一系列全尺寸现场试验结果。在热荷载作用下的桩土相互作用的背景下,给出并讨论了桩内产生的轴向应变和应力。对能量桩的性能进行了总结,并对能量桩作为热交换器的使用提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Note – Issue 3 (2018) Measured end resistance of CFA and drilled displacement piles in San Francisco Area alluvial clay DFI Journal Underwriters A sensitivity analysis on the parameters affecting large diameter helical pile installation torque, depth and installation power for offshore applications The deep soil mixing for the Galataport project in Istanbul, Turkey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1