Network Intrusion Detection in Encrypted Traffic

Eva Papadogiannaki, Giorgos Tsirantonakis, S. Ioannidis
{"title":"Network Intrusion Detection in Encrypted Traffic","authors":"Eva Papadogiannaki, Giorgos Tsirantonakis, S. Ioannidis","doi":"10.1109/DSC54232.2022.9888942","DOIUrl":null,"url":null,"abstract":"Traditional signature-based intrusion detection systems inspect packet headers and payloads to report any malicious or abnormal traffic behavior that is observed in the network. With the advent and rapid adoption of network encryption mechanisms, typical deep packet inspection systems that focus only on the processing of network packet payload contents are gradually becoming obsolete. Advancing intrusion detection tools to be also effective in encrypted networks is crucial. In this work, we propose a signature language indicating packet sequences. Signatures detect events of possible intrusions and malicious actions in encrypted networks using packet metadata. We demonstrate the effectiveness of this methodology using different tools for penetrating vulnerable web servers and a public dataset with traffic that originates from IoT malware. We implement the signature language and we integrate it into an intrusion detection system. Using our proposed methodology, the generated signatures can effectively and efficiently report intrusion attempts.","PeriodicalId":368903,"journal":{"name":"2022 IEEE Conference on Dependable and Secure Computing (DSC)","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Dependable and Secure Computing (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC54232.2022.9888942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Traditional signature-based intrusion detection systems inspect packet headers and payloads to report any malicious or abnormal traffic behavior that is observed in the network. With the advent and rapid adoption of network encryption mechanisms, typical deep packet inspection systems that focus only on the processing of network packet payload contents are gradually becoming obsolete. Advancing intrusion detection tools to be also effective in encrypted networks is crucial. In this work, we propose a signature language indicating packet sequences. Signatures detect events of possible intrusions and malicious actions in encrypted networks using packet metadata. We demonstrate the effectiveness of this methodology using different tools for penetrating vulnerable web servers and a public dataset with traffic that originates from IoT malware. We implement the signature language and we integrate it into an intrusion detection system. Using our proposed methodology, the generated signatures can effectively and efficiently report intrusion attempts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加密流量中的网络入侵检测
传统的基于签名的入侵检测系统通过检测包头和有效负载来报告在网络中观察到的任何恶意或异常的流量行为。随着网络加密机制的出现和迅速采用,传统的仅关注网络数据包有效载荷内容处理的深度包检测系统逐渐被淘汰。改进入侵检测工具,使其在加密网络中也有效是至关重要的。在这项工作中,我们提出了一种表示数据包序列的签名语言。签名通过报文元数据检测加密网络中可能存在的入侵事件和恶意行为。我们使用不同的工具来渗透易受攻击的web服务器和具有来自物联网恶意软件流量的公共数据集,证明了这种方法的有效性。我们实现了签名语言,并将其集成到入侵检测系统中。使用我们提出的方法,生成的签名可以有效地报告入侵企图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Symbolon: Enabling Flexible Multi-device-based User Authentication A Survey on Explainable Anomaly Detection for Industrial Internet of Things Optimising user security recommendations for AI-powered smart-homes A Scary Peek into The Future: Advanced Persistent Threats in Emerging Computing Environments LAEG: Leak-based AEG using Dynamic Binary Analysis to Defeat ASLR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1