Explicit sarcasm handling in emotion level computation of tweets - a big data approach

A. R, S. Chitrakala
{"title":"Explicit sarcasm handling in emotion level computation of tweets - a big data approach","authors":"A. R, S. Chitrakala","doi":"10.1109/ICCCT2.2017.7972260","DOIUrl":null,"url":null,"abstract":"Social media like Twitter offers an important window into the emotions of those who use the platform to share opinions on various topics. Nearly 79% of the world population use social media to express their opinions on various topics. Various commercial organizations like E-commerce sites, health departments, disaster management activities, etc. may want to compute the emotion levels of tweets for analyzing and gaining useful insights into the user's opinions and preferences and using the result of the analysis for various purposes like determining social influence, information diffusion modeling, sentiment analysis, etc. The existing tools for computing the emotion level polarity, however, do not consider sarcasm that most predominantly exist in short texts like tweets. This paper presents a big data approach for computing emotion levels of each tweet for a given day, with handling of explicit sarcasm in tweets. The goal is to provide an efficient and, at the same time, a scalable approach for computing emotion levels in tweets.","PeriodicalId":445567,"journal":{"name":"2017 2nd International Conference on Computing and Communications Technologies (ICCCT)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International Conference on Computing and Communications Technologies (ICCCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCT2.2017.7972260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Social media like Twitter offers an important window into the emotions of those who use the platform to share opinions on various topics. Nearly 79% of the world population use social media to express their opinions on various topics. Various commercial organizations like E-commerce sites, health departments, disaster management activities, etc. may want to compute the emotion levels of tweets for analyzing and gaining useful insights into the user's opinions and preferences and using the result of the analysis for various purposes like determining social influence, information diffusion modeling, sentiment analysis, etc. The existing tools for computing the emotion level polarity, however, do not consider sarcasm that most predominantly exist in short texts like tweets. This paper presents a big data approach for computing emotion levels of each tweet for a given day, with handling of explicit sarcasm in tweets. The goal is to provide an efficient and, at the same time, a scalable approach for computing emotion levels in tweets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推文情感层面计算中的明确讽刺处理——大数据方法
像推特这样的社交媒体提供了一个重要的窗口,可以了解那些使用该平台就各种话题分享意见的人的情绪。世界上近79%的人口使用社交媒体来表达他们对各种话题的看法。电子商务网站、卫生部门、灾害管理活动等各种商业组织可能希望计算推文的情绪水平,以分析和获得对用户意见和偏好的有用见解,并将分析结果用于确定社会影响、信息扩散建模、情绪分析等各种目的。然而,现有的计算情感水平极性的工具并没有考虑到讽刺,而讽刺主要存在于推特等短文本中。本文提出了一种大数据方法,用于计算某一天每条推文的情感水平,并处理推文中的明确讽刺。我们的目标是提供一种高效的、同时可扩展的方法来计算推文中的情感水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart waste management using Internet-of-Things (IoT) HOT GLASS - human face, object and textual recognition for visually challenged Preserving data and key privacy in Data Aggregation for Wireless Sensor Networks FPGA implementation of artificial Neural Network for forest fire detection in wireless Sensor Network Rival Check Cross Correlator for locating strategic defense base using supervised learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1