A Numerical Study of Particle Deposition Through Fuel Pebble Bed in HTGR

Qi Sun, Gang Zhao, W. Peng, Suyuan Yu
{"title":"A Numerical Study of Particle Deposition Through Fuel Pebble Bed in HTGR","authors":"Qi Sun, Gang Zhao, W. Peng, Suyuan Yu","doi":"10.1115/ICONE26-81792","DOIUrl":null,"url":null,"abstract":"The study on the deposition of graphite dust is significant to the safety of High-Temperature Gas-cooled Reactor (HTGR) due to potential accident such as localized hot-spots and intensity change which is caused by the graphite dust generated by abrasion of fuel elements. Based on the steady flow and three-dimensional face centered structures of fuel pebble bed, the discrete phase model (DPM) were applied to simulate trajectory of graphite dust in conditions of HTGR. To determinate the deposition of particle, the present study introduces a rebound condition with critical velocity by a user defined function. The particle trajectories show most of particle deposition can be summed up as the effect of backflow region, turbulent diffusion and inertial impact. The original trap condition overestimates the deposition fraction especially for large particles compared with involving rebound condition. In addition, the trend of deposition fraction shows as the dimeter of particle increases, deposition fraction decreases first and then increases.","PeriodicalId":289940,"journal":{"name":"Volume 9: Student Paper Competition","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICONE26-81792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study on the deposition of graphite dust is significant to the safety of High-Temperature Gas-cooled Reactor (HTGR) due to potential accident such as localized hot-spots and intensity change which is caused by the graphite dust generated by abrasion of fuel elements. Based on the steady flow and three-dimensional face centered structures of fuel pebble bed, the discrete phase model (DPM) were applied to simulate trajectory of graphite dust in conditions of HTGR. To determinate the deposition of particle, the present study introduces a rebound condition with critical velocity by a user defined function. The particle trajectories show most of particle deposition can be summed up as the effect of backflow region, turbulent diffusion and inertial impact. The original trap condition overestimates the deposition fraction especially for large particles compared with involving rebound condition. In addition, the trend of deposition fraction shows as the dimeter of particle increases, deposition fraction decreases first and then increases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高温高温堆燃料球床颗粒沉积的数值研究
由于燃料元件磨损产生的石墨粉尘会引起局部热点和强度变化等潜在事故,对高温气冷堆(HTGR)的安全性进行研究具有重要意义。基于燃料球床的定常流动和三维面心结构,采用离散相模型(DPM)模拟高温高温堆条件下石墨粉尘的运动轨迹。为了确定颗粒的沉积,本研究通过用户定义的函数引入了具有临界速度的回弹条件。颗粒沉积轨迹表明,大部分颗粒沉积可归结为回流区、湍流扩散和惯性冲击的影响。与涉及反弹的条件相比,原始陷阱条件高估了沉积分数,特别是对于大颗粒。随着颗粒直径的增大,沉积分数呈现先减小后增大的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heat Transfer and Fluid Flow Characteristics of One Side Heated Vertical Rectangular Channel Applied As Vessel Cooling System of VHTR Hydraulic Characteristics Research on SG Under Tube Plugging Operations Using FLUENT Study on Flow Structure in a Supersonic Steam Injector Electrochemical Measurement of Radio-Activated Metal Under High Temperature Condition Simulation Research on Thermal-Hydraulic Performance of a Natural Circulation Integrated Pressurized Water Reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1