Nonparametric identification of linear (almost) periodically time-varying systems using cyclic-polyspectra

A. V. Dandawate, G. Giannakis
{"title":"Nonparametric identification of linear (almost) periodically time-varying systems using cyclic-polyspectra","authors":"A. V. Dandawate, G. Giannakis","doi":"10.1109/SSAP.1992.246826","DOIUrl":null,"url":null,"abstract":"Novel algorithms are presented for nonparametric input/output identification of systems using kth-order cyclic-polyspectra at known cycles. Errors-in-variables models with generally cyclostationary inputs are considered. The proposed methods for k>or=3 are insensitive to contamination of both input and output data by even cyclostationary Gaussian noise of unknown covariance. Additional insensitivity to different types of input disturbances is delineated. Consistent and asymptotically normal sample cyclic-polyspectrum estimators are used for implementation, and simulations illustrate the proposed algorithms.<<ETX>>","PeriodicalId":309407,"journal":{"name":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1992.246826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Novel algorithms are presented for nonparametric input/output identification of systems using kth-order cyclic-polyspectra at known cycles. Errors-in-variables models with generally cyclostationary inputs are considered. The proposed methods for k>or=3 are insensitive to contamination of both input and output data by even cyclostationary Gaussian noise of unknown covariance. Additional insensitivity to different types of input disturbances is delineated. Consistent and asymptotically normal sample cyclic-polyspectrum estimators are used for implementation, and simulations illustrate the proposed algorithms.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性(几乎)周期时变系统的非参数辨识
提出了一种利用已知循环的k阶循环多谱进行系统非参数输入/输出辨识的新算法。考虑了具有一般循环平稳输入的变量误差模型。当k>或=3时,所提出的方法对输入和输出数据受到未知协方差的均匀循环平稳高斯噪声的污染不敏感。描述了对不同类型输入干扰的附加不敏感性。使用一致和渐近正态样本循环多谱估计器实现,仿真验证了所提出的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linear prediction based on higher order statistics by a new criterion Fourth-order cumulant structure forcing: application to blind array processing Wideband spatial processing with wavelet transforms Simultaneous CFAR detection and frequency estimation of a sinusoidal signal in noise Least-squares reconstruction of an image from its noisy observations using the bispectrum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1