ASEVis: Visual Exploration of Active System Ensembles to Define Characteristic Measures

Marina Evers, R. Wittkowski, L. Linsen
{"title":"ASEVis: Visual Exploration of Active System Ensembles to Define Characteristic Measures","authors":"Marina Evers, R. Wittkowski, L. Linsen","doi":"10.1109/VIS54862.2022.00039","DOIUrl":null,"url":null,"abstract":"Simulation ensembles are a common tool in physics for understanding how a model outcome depends on input parameters. We analyze an active particle system, where each particle can use energy from its surroundings to propel itself. A multi-dimensional feature vector containing all particles' motion information can describe the whole system at each time step. The system's behavior strongly depends on input parameters like the propulsion mechanism of the particles. To understand how the time-varying behavior depends on the input parameters, it is necessary to introduce new measures to quantify the difference of the dynamics of the ensemble members. We propose a tool that supports the interactive visual analysis of time-varying feature-vector ensembles. A core component of our tool allows for the interactive definition and refinement of new measures that can then be used to understand the system's behavior and compare the ensemble members. Different visualizations support the user in finding a characteristic measure for the system. By visualizing the user-defined measure, the user can then investigate the parameter dependencies and gain insights into the relationship between input parameters and simulation output.","PeriodicalId":190244,"journal":{"name":"2022 IEEE Visualization and Visual Analytics (VIS)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Visualization and Visual Analytics (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS54862.2022.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Simulation ensembles are a common tool in physics for understanding how a model outcome depends on input parameters. We analyze an active particle system, where each particle can use energy from its surroundings to propel itself. A multi-dimensional feature vector containing all particles' motion information can describe the whole system at each time step. The system's behavior strongly depends on input parameters like the propulsion mechanism of the particles. To understand how the time-varying behavior depends on the input parameters, it is necessary to introduce new measures to quantify the difference of the dynamics of the ensemble members. We propose a tool that supports the interactive visual analysis of time-varying feature-vector ensembles. A core component of our tool allows for the interactive definition and refinement of new measures that can then be used to understand the system's behavior and compare the ensemble members. Different visualizations support the user in finding a characteristic measure for the system. By visualizing the user-defined measure, the user can then investigate the parameter dependencies and gain insights into the relationship between input parameters and simulation output.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ASEVis:主动系统集成的可视化探索,以定义特征度量
仿真集成是物理学中用于理解模型结果如何依赖于输入参数的常用工具。我们分析了一个活跃的粒子系统,其中每个粒子都可以利用周围环境的能量来推动自己。一个包含所有粒子运动信息的多维特征向量可以在每个时间步描述整个系统。系统的行为很大程度上取决于输入参数,比如粒子的推进机制。为了理解时变行为如何依赖于输入参数,有必要引入新的度量来量化集成成员的动力学差异。我们提出了一个工具,支持时变特征向量集合的交互式可视化分析。我们工具的一个核心组件允许对新的度量进行交互式定义和细化,然后可以使用这些度量来理解系统的行为并比较集成成员。不同的可视化支持用户找到系统的特征度量。通过可视化用户定义的度量,用户可以研究参数依赖性,并深入了解输入参数和仿真输出之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Paths Through Spatial Networks Explaining Website Reliability by Visualizing Hyperlink Connectivity Volume Puzzle: visual analysis of segmented volume data with multivariate attributes VIS 2022 Program Committee The role of extended reality for planning coronary artery bypass graft surgery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1