Use of PLP Cepstral Features for Phonetic Segmentation

Bhavik B. Vachhani, H. Patil
{"title":"Use of PLP Cepstral Features for Phonetic Segmentation","authors":"Bhavik B. Vachhani, H. Patil","doi":"10.1109/IALP.2013.47","DOIUrl":null,"url":null,"abstract":"Phonetic segmentation can find its potential application for Text-to-Speech (TTS) synthesis and Automatic Speech Recognition (ASR) systems. In this paper, we propose use of Perceptual Linear Prediction Cepstral Coefficients (PLPCC) feature for phonetic segmentation task. To detect phonetic boundaries, we used spectral transition measure (STM). Using proposed approach, we achieve 85 % (i.e., 3 % better than state-of-the art Mel-frequency Cepstral Coefficients (MFCC) for 20 ms agreement duration) accuracy and 15 % over-segmentation rate (i.e., 8 % less than MFCC) for automatic boundary detection of 2, 34, 925 phone boundaries corresponding 630 speakers of entire TIMIT database.","PeriodicalId":413833,"journal":{"name":"2013 International Conference on Asian Language Processing","volume":"270 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2013.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Phonetic segmentation can find its potential application for Text-to-Speech (TTS) synthesis and Automatic Speech Recognition (ASR) systems. In this paper, we propose use of Perceptual Linear Prediction Cepstral Coefficients (PLPCC) feature for phonetic segmentation task. To detect phonetic boundaries, we used spectral transition measure (STM). Using proposed approach, we achieve 85 % (i.e., 3 % better than state-of-the art Mel-frequency Cepstral Coefficients (MFCC) for 20 ms agreement duration) accuracy and 15 % over-segmentation rate (i.e., 8 % less than MFCC) for automatic boundary detection of 2, 34, 925 phone boundaries corresponding 630 speakers of entire TIMIT database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用PLP倒谱特征进行语音分割
语音切分在文本到语音(TTS)合成和自动语音识别(ASR)系统中具有潜在的应用前景。在本文中,我们提出使用感知线性预测倒谱系数(PLPCC)特征来完成语音分割任务。为了检测语音边界,我们使用了频谱转移度量(STM)。使用该方法,我们实现了85%(即比最先进的Mel-frequency Cepstral Coefficients (MFCC)在20 ms协议持续时间内提高3%)的准确率和15%的过分割率(即比MFCC低8%),用于整个TIMIT数据库中对应630个扬声器的2,34,925个电话边界的自动边界检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Judgment, Extraction and Selective Restriction of Chinese Eventive Verb Categorization and Identification of Fragments with Shi Plus Punctuation Feature Abstraction for Lightweight and Accurate Chinese Word Segmentation The Comparative Research on the Segmentation Strategies of Tibetan Bounded-Variant Forms An Empirical Evaluation of Dimensionality Reduction Using Latent Semantic Analysis on Hindi Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1