Mechanical Behavior of Thermosetting Polymers Undergoing High Strain-Rate Impact

P. Sable, J. Borg
{"title":"Mechanical Behavior of Thermosetting Polymers Undergoing High Strain-Rate Impact","authors":"P. Sable, J. Borg","doi":"10.1115/imece2019-10459","DOIUrl":null,"url":null,"abstract":"\n A series of uniaxial and oblique flyer-plate impact experiments were conducted on fully dense, high durometer, polyurethane and epoxy formulations to investigate the high strain-rate dynamic material response. Samples were impacted at velocities ranging from 50 to 1,200 m/s at strain-rates of 105 – 106 s−1. The Hugoniot constants, yield strengths, and friction coefficients were inferred from velocity measurements taken from the back surface of the targets. Polymer Hugoniots were found to closely approximate those previously found in literature, with nonlinear curvature at low impact speeds due to viscoelastic effects. Strength behavior demonstrated pressure dependence which fit into a Mohr-Coulomb or Drucker-Prager yield surface criterion. Coefficients of friction between both epoxy and polyurethane, alongside a 7075-T6 aluminum tribological partner were quantified and results were used in conjunction with yield observations to hypothesize on the role of adhesion in high strain-rate shear of polymer-metal interfaces.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"1125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Mechanics of Solids, Structures, and Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-10459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A series of uniaxial and oblique flyer-plate impact experiments were conducted on fully dense, high durometer, polyurethane and epoxy formulations to investigate the high strain-rate dynamic material response. Samples were impacted at velocities ranging from 50 to 1,200 m/s at strain-rates of 105 – 106 s−1. The Hugoniot constants, yield strengths, and friction coefficients were inferred from velocity measurements taken from the back surface of the targets. Polymer Hugoniots were found to closely approximate those previously found in literature, with nonlinear curvature at low impact speeds due to viscoelastic effects. Strength behavior demonstrated pressure dependence which fit into a Mohr-Coulomb or Drucker-Prager yield surface criterion. Coefficients of friction between both epoxy and polyurethane, alongside a 7075-T6 aluminum tribological partner were quantified and results were used in conjunction with yield observations to hypothesize on the role of adhesion in high strain-rate shear of polymer-metal interfaces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高应变率冲击下热固性聚合物的力学行为
对全密、高硬度、聚氨酯和环氧树脂配方进行了单轴和斜向飞板冲击试验,研究了材料的高应变率动态响应。在105 - 106 s−1的应变速率下,样品以50 - 1200 m/s的速度受到冲击。Hugoniot常数、屈服强度和摩擦系数是根据目标背面的速度测量得出的。聚合物Hugoniots被发现与先前文献中发现的非常接近,由于粘弹性效应,在低冲击速度下具有非线性曲率。强度表现出压力依赖性,符合Mohr-Coulomb或Drucker-Prager屈服面准则。对环氧树脂和聚氨酯之间的摩擦系数以及7075-T6铝摩擦学伙伴进行了量化,并将结果与屈服观察相结合,以假设粘附在聚合物-金属界面的高应变速率剪切中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Macro-Scale Geometric Voids to Alter Stress Wave Propagation in Solids Finite Element Analysis of the Effect of Porosity on the Plasticity and Damage Behavior of Mg AZ31 and Al 6061 T651 Alloys Effects of Drive Side Pressure Angle on Gear Fatigue Crack Propagation Life for Spur Gears With Symmetric and Asymmetric Teeth Guidelines and Limitations of the Compact Compression Specimen Modelling Stress Softening and Necking Phenomena in Double Network Hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1