Articulatory feature detection with Support Vector Machines for integration into ASR and phone recognition

U. Chaudhari, M. Picheny
{"title":"Articulatory feature detection with Support Vector Machines for integration into ASR and phone recognition","authors":"U. Chaudhari, M. Picheny","doi":"10.1109/ASRU.2009.5373326","DOIUrl":null,"url":null,"abstract":"We study the use of Support Vector Machines (SVM) for detecting the occurrence of articulatory features in speech audio data and using the information contained in the detector outputs to improve phone and speech recognition. Our expectation is that an SVM should be able to appropriately model the separation of the classes which may have complex distributions in feature space. We show that performance improves markedly when using discriminatively trained speaker dependent parameters for the SVM inputs, and compares quite well to results in the literature using other classifiers, namely Artificial Neural Networks (ANN). Further, we show that the resulting detector outputs can be successfully integrated into a state of the art speech recognition system, with consequent performance gains. Notably, we test our system on English broadcast news data from dev04f.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5373326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We study the use of Support Vector Machines (SVM) for detecting the occurrence of articulatory features in speech audio data and using the information contained in the detector outputs to improve phone and speech recognition. Our expectation is that an SVM should be able to appropriately model the separation of the classes which may have complex distributions in feature space. We show that performance improves markedly when using discriminatively trained speaker dependent parameters for the SVM inputs, and compares quite well to results in the literature using other classifiers, namely Artificial Neural Networks (ANN). Further, we show that the resulting detector outputs can be successfully integrated into a state of the art speech recognition system, with consequent performance gains. Notably, we test our system on English broadcast news data from dev04f.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发音特征检测与支持向量机集成到ASR和电话识别
我们研究了使用支持向量机(SVM)来检测语音音频数据中发音特征的出现,并使用检测器输出中包含的信息来改进电话和语音识别。我们的期望是支持向量机应该能够适当地对特征空间中可能具有复杂分布的类的分离进行建模。我们表明,当使用判别训练的说话人相关参数作为支持向量机输入时,性能显着提高,并且与文献中使用其他分类器(即人工神经网络(ANN))的结果相比相当好。此外,我们表明,所得到的检测器输出可以成功地集成到最先进的语音识别系统中,从而获得性能提升。值得注意的是,我们在dev04f的英语广播新闻数据上测试了我们的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of OOV words by combining acoustic confidence measures with linguistic features Automatic translation from parallel speech: Simultaneous interpretation as MT training data Local and global models for spontaneous speech segment detection and characterization Automatic punctuation generation for speech Response timing generation and response type selection for a spontaneous spoken dialog system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1