Solving Large Scale Binary Quadratic Problems: Spectral Methods vs. Semidefinite Programming

Carl Olsson, Anders P. Eriksson, Fredrik Kahl
{"title":"Solving Large Scale Binary Quadratic Problems: Spectral Methods vs. Semidefinite Programming","authors":"Carl Olsson, Anders P. Eriksson, Fredrik Kahl","doi":"10.1109/CVPR.2007.383202","DOIUrl":null,"url":null,"abstract":"In this paper we introduce two new methods for solving binary quadratic problems. While spectral relaxation methods have been the workhorse subroutine for a wide variety of computer vision problems - segmentation, clustering, image restoration to name a few - it has recently been challenged by semidefinite programming (SDP) relaxations. In fact, it can be shown that SDP relaxations produce better lower bounds than spectral relaxations on binary problems with a quadratic objective function. On the other hand, the computational complexity for SDP increases rapidly as the number of decision variables grows making them inapplicable to large scale problems. Our methods combine the merits of both spectral and SDP relaxations -better (lower) bounds than traditional spectral methods and considerably faster execution times than SDP. The first method is based on spectral subgradients and can be applied to large scale SDPs with binary decision variables and the second one is based on the trust region problem. Both algorithms have been applied to several large scale vision problems with good performance.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"284 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

In this paper we introduce two new methods for solving binary quadratic problems. While spectral relaxation methods have been the workhorse subroutine for a wide variety of computer vision problems - segmentation, clustering, image restoration to name a few - it has recently been challenged by semidefinite programming (SDP) relaxations. In fact, it can be shown that SDP relaxations produce better lower bounds than spectral relaxations on binary problems with a quadratic objective function. On the other hand, the computational complexity for SDP increases rapidly as the number of decision variables grows making them inapplicable to large scale problems. Our methods combine the merits of both spectral and SDP relaxations -better (lower) bounds than traditional spectral methods and considerably faster execution times than SDP. The first method is based on spectral subgradients and can be applied to large scale SDPs with binary decision variables and the second one is based on the trust region problem. Both algorithms have been applied to several large scale vision problems with good performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求解大规模二元二次问题:谱方法与半定规划
本文介绍了求解二元二次问题的两种新方法。虽然光谱松弛方法一直是各种计算机视觉问题的主要子程序,如分割、聚类、图像恢复等,但它最近受到半确定规划(SDP)松弛的挑战。事实上,对于具有二次目标函数的二元问题,可以证明SDP松弛比谱松弛产生更好的下界。另一方面,随着决策变量数量的增加,SDP的计算复杂度迅速增加,使其不适用于大规模问题。我们的方法结合了谱松弛和SDP松弛的优点——比传统的谱方法有更好的下界和比SDP快得多的执行时间。第一种方法是基于谱次梯度,可以应用于具有二元决策变量的大规模sdp;第二种方法是基于信任域问题。这两种算法已经应用于几个大规模的视觉问题,并取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Region and Edge Cues for Image Segmentation in a Probabilistic Gaussian Mixture Framework Fast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression Enhanced Level Building Algorithm for the Movement Epenthesis Problem in Sign Language Recognition Change Detection in a 3-d World Layered Graph Match with Graph Editing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1