An efficient channel pruning algorithm for automatic compression and acceleration of neural network models

Wei Xie, Xiaobo Feng
{"title":"An efficient channel pruning algorithm for automatic compression and acceleration of neural network models","authors":"Wei Xie, Xiaobo Feng","doi":"10.1117/12.2660854","DOIUrl":null,"url":null,"abstract":"The Convolutional Neural Network (CNN) enables deep neural networks to be deployed to resource-constrained mobile devices via model compression and acceleration. At present, channel pruning methods select channels based on channel importance or designed regularization, which are suboptimal pruning and cannot be automated. In this paper, a channel pruning algorithm is proposed to get the optimal pruned structure via automatic searching. By setting the super-parameter constraint set, the combination number of pruning structures is reduced. The number of channels for each layer of the CNN is determined using the sparrow search algorithm, and the optimal pruned structure of the model is found. The results of extensive experiments show that the proposed method can improve the model's parameter compression ratio and reduce the number of FLOPS within the acceptable range of model accuracy loss.","PeriodicalId":220312,"journal":{"name":"International Symposium on Computer Engineering and Intelligent Communications","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Computer Engineering and Intelligent Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2660854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Convolutional Neural Network (CNN) enables deep neural networks to be deployed to resource-constrained mobile devices via model compression and acceleration. At present, channel pruning methods select channels based on channel importance or designed regularization, which are suboptimal pruning and cannot be automated. In this paper, a channel pruning algorithm is proposed to get the optimal pruned structure via automatic searching. By setting the super-parameter constraint set, the combination number of pruning structures is reduced. The number of channels for each layer of the CNN is determined using the sparrow search algorithm, and the optimal pruned structure of the model is found. The results of extensive experiments show that the proposed method can improve the model's parameter compression ratio and reduce the number of FLOPS within the acceptable range of model accuracy loss.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于神经网络模型自动压缩和加速的有效信道修剪算法
卷积神经网络(CNN)通过模型压缩和加速将深度神经网络部署到资源受限的移动设备上。目前的信道修剪方法是基于信道重要性或设计正则化来选择信道,属于次优修剪,无法实现自动化。本文提出了一种信道剪枝算法,通过自动搜索得到最优剪枝结构。通过设置超参数约束集,减少剪枝结构的组合个数。利用麻雀搜索算法确定CNN每层的通道数,找到模型的最优剪枝结构。大量实验结果表明,该方法可以提高模型的参数压缩比,并在模型精度损失可接受的范围内减少FLOPS的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A CRCLA task partition algorithm based on ant colony algorithm Surface defect detection for capsule based on improved YOLOv3 algorithm DQN based joint computing offloading and resource allocation for network slicing in F-RAN Analysis on AES encryption standard and safety Design of power domain non-orthogonal demodulation based on OFDM system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1