Intelligent Configuration of PHY-Layer Parameters to Reduce Energy Consumption in LoRa

Mário Nascimento Carvalho Filho, M. Campista
{"title":"Intelligent Configuration of PHY-Layer Parameters to Reduce Energy Consumption in LoRa","authors":"Mário Nascimento Carvalho Filho, M. Campista","doi":"10.1109/LATINCOM56090.2022.10000495","DOIUrl":null,"url":null,"abstract":"Communications over long distances and strong resilience to interference are vital aspects of LoRa. LoRa adjusts the modulation to allow higher data transmission rates, depending on the reception sensitivity threshold and the communication distance. The spreading factor and the transmission power, in turn, are directly related to energy consumption, influencing network performance. This paper proposes the use of supervised learning techniques to conFigure the spreading factor and the transmission power simultaneously. This approach differs from the literature as it configures two parameters instead of just one, the spreading factor. Different learning techniques are evaluated through simulations using a LoRa network. Our experiments compare the performance of our proposal with the traditional LoRaWAN and the state-of-the-art on intelligent configuration using only the spreading factor. The obtained results show that our proposal successfully reduces the energy consumption without affecting the packet delivery ratio.","PeriodicalId":221354,"journal":{"name":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM56090.2022.10000495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Communications over long distances and strong resilience to interference are vital aspects of LoRa. LoRa adjusts the modulation to allow higher data transmission rates, depending on the reception sensitivity threshold and the communication distance. The spreading factor and the transmission power, in turn, are directly related to energy consumption, influencing network performance. This paper proposes the use of supervised learning techniques to conFigure the spreading factor and the transmission power simultaneously. This approach differs from the literature as it configures two parameters instead of just one, the spreading factor. Different learning techniques are evaluated through simulations using a LoRa network. Our experiments compare the performance of our proposal with the traditional LoRaWAN and the state-of-the-art on intelligent configuration using only the spreading factor. The obtained results show that our proposal successfully reduces the energy consumption without affecting the packet delivery ratio.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能配置物理层参数,降低LoRa的能耗
远距离通信和强抗干扰能力是LoRa的重要方面。LoRa根据接收灵敏度阈值和通信距离调整调制以允许更高的数据传输速率。而扩频系数和传输功率又直接关系到能耗,影响网络性能。本文提出利用监督学习技术同时配置扩频因子和传输功率。这种方法与文献不同,因为它配置了两个参数,而不仅仅是一个参数,即扩散因子。通过使用LoRa网络进行模拟,评估了不同的学习技术。我们的实验比较了我们的方案与传统的LoRaWAN和最先进的智能配置的性能,只使用扩频因子。实验结果表明,我们的方案在不影响数据包发送率的情况下,成功地降低了能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-band Optical Network Assisted by GNPy: an Experimental Demonstration A Stacked Ensemble Classifier for an Intrusion Detection System in the Edge of IoT and IIoT Networks A Novel Short-term Vehicle Location Prediction using Temporal Graph Neural Networks LATINCOM 2022 Message from the General Chairs LATINCOM 2022 TOC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1