Remarks on computational emotion classification from physiological signal - Evaluation of how jazz music chord progression influences emotion

Megumi Maekawa, Kazuhiko Takahashi, M. Hashimoto
{"title":"Remarks on computational emotion classification from physiological signal - Evaluation of how jazz music chord progression influences emotion","authors":"Megumi Maekawa, Kazuhiko Takahashi, M. Hashimoto","doi":"10.1109/ISDA.2012.6416670","DOIUrl":null,"url":null,"abstract":"This paper evaluates human emotional change by sound stimuli focused on chord progression in jazz music and conducts computational emotion classification from physiological information. Psychological experiments using chord progression tunes as sound stimuli are conducted with 117 subjects and the result of subjective evaluation shows that positive emotional valance chord progression tunes that have ascending fourth aroused positive images, and negative emotional valence chord progression tunes that have chromatic descent aroused negative images. Psychophysical experiments using chord progression tunes to excite emotions in subjects are conducted to gather acceleration plethysmogram data. For computational emotion classification, multi-layer neural network using feature values extracted from heart rate and acceleration plethysmogram is used to discriminate emotional class. In experiments of computational emotion classification, an average of 38.3% classification rate is attained in three emotions - positive, negative, and neutral.","PeriodicalId":370150,"journal":{"name":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2012.6416670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper evaluates human emotional change by sound stimuli focused on chord progression in jazz music and conducts computational emotion classification from physiological information. Psychological experiments using chord progression tunes as sound stimuli are conducted with 117 subjects and the result of subjective evaluation shows that positive emotional valance chord progression tunes that have ascending fourth aroused positive images, and negative emotional valence chord progression tunes that have chromatic descent aroused negative images. Psychophysical experiments using chord progression tunes to excite emotions in subjects are conducted to gather acceleration plethysmogram data. For computational emotion classification, multi-layer neural network using feature values extracted from heart rate and acceleration plethysmogram is used to discriminate emotional class. In experiments of computational emotion classification, an average of 38.3% classification rate is attained in three emotions - positive, negative, and neutral.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生理信号的计算情绪分类评述——爵士音乐和弦进行对情绪影响的评价
本文以爵士音乐的和弦进行为研究对象,通过声音刺激评价人的情绪变化,并从生理信息中进行计算情绪分类。对117名被试进行了以和弦进行调为声音刺激的心理实验,主观评价结果表明,带有升四度的积极情绪价和弦进行调能唤起积极意象,带有半音下降的消极情绪价和弦进行调能唤起消极意象。心理物理实验使用和弦进行曲调来激发受试者的情绪,以收集加速脉搏图数据。在计算情绪分类方面,采用基于心率和加速度容积图特征值的多层神经网络进行情绪分类。在计算情绪分类实验中,积极情绪、消极情绪和中性情绪的平均分类率为38.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of risk score for heart disease using associative classification and hybrid feature subset selection WSDL-TC: Collaborative customization of web services Knowledge representation and reasoning based on generalised fuzzy Petri nets Interval-valued fuzzy graph representation of concept lattice Community optimization: Function optimization by a simulated web community
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1