RFPL

Gaoxiang Xu, Dan Feng, Zhipeng Tan, Xinyan Zhang, Jie Xu, Xing Shu, Yifeng Zhu
{"title":"RFPL","authors":"Gaoxiang Xu, Dan Feng, Zhipeng Tan, Xinyan Zhang, Jie Xu, Xing Shu, Yifeng Zhu","doi":"10.1145/3337821.3337887","DOIUrl":null,"url":null,"abstract":"Parity based RAID suffers from poor small write performance due to heavy parity update overhead. The recently proposed method EPLOG constructs a new stripe with updated data chunks without updating old parity chunks. However, due to skewness of data accesses, old versions of updated data chunks often need to be kept to protect other data chunks of the same stripe. This seriously hurts the efficiency of recovering system from device failures due to the need of reconstructing the preserved old data chunks on failed devices. In this paper, we propose a Recovery Friendly Parity Logging scheme, called RFPL, which minimizes small write penalty and provides high recovery performance for SSD RAID. The key idea of RFPL is to reduce the mixture of old and new data chunks in a stripe by exploiting skewness of data accesses. RFPL constructs a new stripe with updated data chunks of the same old stripe. Since cold data chunks of the old stripe are rarely updated, it is likely that all of data chunks written to the new stripe are hot data and become old together within a short time span. This co-old of data chunks in a stripe effectively mitigates the total number of old data chunks which need to be preserved. We have implemented RFPL on a RAID-5 SSD array in Linux 4.3. Experimental results show that, compared with the Linux software RAID, RFPL reduces user I/O response time by 83.1% for normal state and 81.6% for reconstruction state. Compared with the state-of-the-art scheme EPLOG, RFPL reduces user I/O response time by 46.8% for normal state and 40.9% for reconstruction state. Our reliability analysis shows RFPL improves the mean time to data loss (MTTDL) by 9.36X and 1.44X compared with the Linux software RAID and EPLOG.","PeriodicalId":405273,"journal":{"name":"Proceedings of the 48th International Conference on Parallel Processing","volume":"679 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 48th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3337821.3337887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Parity based RAID suffers from poor small write performance due to heavy parity update overhead. The recently proposed method EPLOG constructs a new stripe with updated data chunks without updating old parity chunks. However, due to skewness of data accesses, old versions of updated data chunks often need to be kept to protect other data chunks of the same stripe. This seriously hurts the efficiency of recovering system from device failures due to the need of reconstructing the preserved old data chunks on failed devices. In this paper, we propose a Recovery Friendly Parity Logging scheme, called RFPL, which minimizes small write penalty and provides high recovery performance for SSD RAID. The key idea of RFPL is to reduce the mixture of old and new data chunks in a stripe by exploiting skewness of data accesses. RFPL constructs a new stripe with updated data chunks of the same old stripe. Since cold data chunks of the old stripe are rarely updated, it is likely that all of data chunks written to the new stripe are hot data and become old together within a short time span. This co-old of data chunks in a stripe effectively mitigates the total number of old data chunks which need to be preserved. We have implemented RFPL on a RAID-5 SSD array in Linux 4.3. Experimental results show that, compared with the Linux software RAID, RFPL reduces user I/O response time by 83.1% for normal state and 81.6% for reconstruction state. Compared with the state-of-the-art scheme EPLOG, RFPL reduces user I/O response time by 46.8% for normal state and 40.9% for reconstruction state. Our reliability analysis shows RFPL improves the mean time to data loss (MTTDL) by 9.36X and 1.44X compared with the Linux software RAID and EPLOG.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RFPL
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Express Link Placement for NoC-Based Many-Core Platforms Cartesian Collective Communication Artemis A Specialized Concurrent Queue for Scheduling Irregular Workloads on GPUs diBELLA: Distributed Long Read to Long Read Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1