Interpretable Sentiment Analysis based on Deep Learning: An overview

Shila Jawale, S. Sawarkar
{"title":"Interpretable Sentiment Analysis based on Deep Learning: An overview","authors":"Shila Jawale, S. Sawarkar","doi":"10.1109/PuneCon50868.2020.9362361","DOIUrl":null,"url":null,"abstract":"Sentiment analysis (SA) or emotion AI or opinion mining uses natural language processing (NLP). Sentiment Analysis identify, study, quantify, obtain, tacit states and subject related information. Broad spectrum of areas influenced due to Sentiment Analysis such as policy making by the government, finding mental health of individuals, finding misuse of drugs in healthcare, fraud detection in the financial sector, covid-19 awareness and impact, Cyber-crime etc. As the amplitude of social media data increases day by day, there is a need to automatically address sentiment analysis. Deep learning handles it very well. It gives very good accuracy but incomprehensibility in decision strategy. For better decision-making trust, believe, fairness, reliability, and unbiasing is important. This paper explores the work done in this area along with popular techniques to address interpretability in sentiment analysis and its evaluation criteria.","PeriodicalId":368862,"journal":{"name":"2020 IEEE Pune Section International Conference (PuneCon)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Pune Section International Conference (PuneCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PuneCon50868.2020.9362361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sentiment analysis (SA) or emotion AI or opinion mining uses natural language processing (NLP). Sentiment Analysis identify, study, quantify, obtain, tacit states and subject related information. Broad spectrum of areas influenced due to Sentiment Analysis such as policy making by the government, finding mental health of individuals, finding misuse of drugs in healthcare, fraud detection in the financial sector, covid-19 awareness and impact, Cyber-crime etc. As the amplitude of social media data increases day by day, there is a need to automatically address sentiment analysis. Deep learning handles it very well. It gives very good accuracy but incomprehensibility in decision strategy. For better decision-making trust, believe, fairness, reliability, and unbiasing is important. This paper explores the work done in this area along with popular techniques to address interpretability in sentiment analysis and its evaluation criteria.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的可解释情感分析:综述
情感分析(SA)或情感AI或意见挖掘使用自然语言处理(NLP)。情感分析识别、研究、量化、获取、隐性状态和主题相关信息。受情绪分析影响的广泛领域,如政府的政策制定、发现个人的心理健康状况、发现医疗保健中的药物滥用、金融部门的欺诈检测、covid-19的认识和影响、网络犯罪等。随着社交媒体数据量的日益增加,有必要自动处理情感分析。深度学习很好地处理了这个问题。它在决策策略上具有很高的准确性,但不具有可理解性。为了做出更好的决策,信任、相信、公平、可靠和公正是很重要的。本文探讨了在这一领域所做的工作,以及解决情感分析及其评估标准中的可解释性的流行技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulmonary CT Images Segmentation using CNN and UNet Models of Deep Learning Feature-Based Landslide Susceptibility and Hazard Zonation Maps using Fuzzy Overlay Analysis Impact of Driving Style on Battery Life of the Electric Vehicle Face and Palmprint Biometric Recognition by using Weighted Score Fusion Technique Nature of CSF based on Beating Time in Fibre Reinforced Cotton Rag
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1