On the properties of artificial neural network filters for bone-suppressed digital radiography

E. Park, Junbeom Park, Dae-Hong Kim, H. Youn, H. Jeon, Jin Sung Kim, D. Kang, Ho Kyung Kim
{"title":"On the properties of artificial neural network filters for bone-suppressed digital radiography","authors":"E. Park, Junbeom Park, Dae-Hong Kim, H. Youn, H. Jeon, Jin Sung Kim, D. Kang, Ho Kyung Kim","doi":"10.1117/12.2216739","DOIUrl":null,"url":null,"abstract":"Dual-energy imaging can enhance lesion conspicuity. However, the conventional (fast kilovoltage switching) dual-shot dual-energy imaging is vulnerable to patient motion. The single-shot method requires a special design of detector system. Alternatively, single-shot bone-suppressed imaging is possible using post-image processing combined with a filter obtained from training an artificial neural network. In this study, the authors investigate the general properties of artificial neural network filters for bone-suppressed digital radiography. The filter properties are characterized in terms of various parameters such as the size of input vector, the number of hidden units, the learning rate, and so on. The preliminary result shows that the bone-suppressed image obtained from the filter, which is designed with 5,000 teaching images from a single radiograph, results in about 95% similarity with a commercial bone-enhanced image.","PeriodicalId":228011,"journal":{"name":"SPIE Medical Imaging","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Medical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2216739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Dual-energy imaging can enhance lesion conspicuity. However, the conventional (fast kilovoltage switching) dual-shot dual-energy imaging is vulnerable to patient motion. The single-shot method requires a special design of detector system. Alternatively, single-shot bone-suppressed imaging is possible using post-image processing combined with a filter obtained from training an artificial neural network. In this study, the authors investigate the general properties of artificial neural network filters for bone-suppressed digital radiography. The filter properties are characterized in terms of various parameters such as the size of input vector, the number of hidden units, the learning rate, and so on. The preliminary result shows that the bone-suppressed image obtained from the filter, which is designed with 5,000 teaching images from a single radiograph, results in about 95% similarity with a commercial bone-enhanced image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骨抑制数字摄影中人工神经网络滤波器的特性研究
双能成像可增强病变的显著性。然而,传统的(快速千伏开关)双镜头双能成像容易受到患者运动的影响。单发法需要特殊的探测器系统设计。或者,单镜头骨抑制成像是可能的,使用图像后处理与训练人工神经网络获得的滤波器相结合。在这项研究中,作者研究了骨抑制数字x线摄影的人工神经网络滤波器的一般性质。滤波器的特性是根据各种参数来描述的,比如输入向量的大小、隐藏单元的数量、学习率等等。初步结果表明,该滤波器使用来自单张x光片的5000张教学图像设计得到的骨抑制图像与商业骨增强图像的相似性约为95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualizing and enhancing a deep learning framework using patients age and gender for chest x-ray image retrieval EXPLORER: Changing the molecular imaging paradigm with total-body PET/CT (Conference Presentation) The evolution of medical imaging from qualitative to quantitative: opportunities, challenges, and approaches (Conference Presentation) New platform for evaluating ultrasound-guided interventional technologies Speed of sound estimation with active PZT element for thermal monitoring during ablation therapy: feasibility study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1