Andrea Amidei, Pierangelo Maria Rapa, Giuseppe Tagliavini, R. Rabbeni, Paolo Pavan, Simone Benatti
{"title":"ANGELS - Smart Steering Wheel for Driver Safety","authors":"Andrea Amidei, Pierangelo Maria Rapa, Giuseppe Tagliavini, R. Rabbeni, Paolo Pavan, Simone Benatti","doi":"10.1109/IWASI58316.2023.10164505","DOIUrl":null,"url":null,"abstract":"The automotive industry increasingly recognizes the importance of human-machine interaction in enhancing the driving experience and improving driver safety. Human factors, such as drowsiness and attention deficits, play a primary role in safe driving. There are several research and commercial solutions to address these issues. However, they analyze vehicle behavior and are unable to assess the driver’s state in a timely manner. A novel approach to this problem is to monitor the driver’s physiological signals. In this context, Photoplethysmography (PPG) is a noninvasive technique that monitors cardiac activity and can provide information regarding the driver’s state. This work introduces ANGELS, an embedded system that exploits PPG signals to monitor drivers in a non-invasive way. ANGELS is a low-cost and low-power system that can be integrated into the steering wheel of a car. It acquires and processes the driver’s PPG signals in real-time and enables heart rate monitoring without requiring accelerometer data to remove motion artifacts. We perform an experimental assessment using the Maserati driving simulator. ANGELS features a mean absolute error on heart rate detection of 1.19 BPM with a latency of 10 s and power consumption of only 130 mW. These results demonstrate that it is a reliable and promising solution for improving driver safety.","PeriodicalId":261827,"journal":{"name":"2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWASI58316.2023.10164505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The automotive industry increasingly recognizes the importance of human-machine interaction in enhancing the driving experience and improving driver safety. Human factors, such as drowsiness and attention deficits, play a primary role in safe driving. There are several research and commercial solutions to address these issues. However, they analyze vehicle behavior and are unable to assess the driver’s state in a timely manner. A novel approach to this problem is to monitor the driver’s physiological signals. In this context, Photoplethysmography (PPG) is a noninvasive technique that monitors cardiac activity and can provide information regarding the driver’s state. This work introduces ANGELS, an embedded system that exploits PPG signals to monitor drivers in a non-invasive way. ANGELS is a low-cost and low-power system that can be integrated into the steering wheel of a car. It acquires and processes the driver’s PPG signals in real-time and enables heart rate monitoring without requiring accelerometer data to remove motion artifacts. We perform an experimental assessment using the Maserati driving simulator. ANGELS features a mean absolute error on heart rate detection of 1.19 BPM with a latency of 10 s and power consumption of only 130 mW. These results demonstrate that it is a reliable and promising solution for improving driver safety.