Catchem: A Browser Plugin for the Panama Papers Using Approximate String Matching

Panos Kostakos, Miika Moilanen, Arttu Niemela, M. Oussalah
{"title":"Catchem: A Browser Plugin for the Panama Papers Using Approximate String Matching","authors":"Panos Kostakos, Miika Moilanen, Arttu Niemela, M. Oussalah","doi":"10.1109/EISIC.2017.28","DOIUrl":null,"url":null,"abstract":"The Panama Papers is a collection of 11.5 million leaked records that contain information for more than 214,488 offshore entities. This collection is growing rapidly as more leaked records become available online. In this paper, we present a work in progress on a web browser plugin that detects company names from the Panama Papers and alerts the user by means of unobtrusive visual cues. We matched a random sample of company names from the Public Works and Government Services Canada registry against the Panama Papers using three different string matching techniques. Monge-Elkan is found to provide the best matching results but at increased computational cost. Levenshtein-based approach is found to provide the best tradeoff between matching and computational cost, while Jacquard index like approach is found to be less sensitive to slight textual change.","PeriodicalId":436947,"journal":{"name":"2017 European Intelligence and Security Informatics Conference (EISIC)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 European Intelligence and Security Informatics Conference (EISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EISIC.2017.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Panama Papers is a collection of 11.5 million leaked records that contain information for more than 214,488 offshore entities. This collection is growing rapidly as more leaked records become available online. In this paper, we present a work in progress on a web browser plugin that detects company names from the Panama Papers and alerts the user by means of unobtrusive visual cues. We matched a random sample of company names from the Public Works and Government Services Canada registry against the Panama Papers using three different string matching techniques. Monge-Elkan is found to provide the best matching results but at increased computational cost. Levenshtein-based approach is found to provide the best tradeoff between matching and computational cost, while Jacquard index like approach is found to be less sensitive to slight textual change.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随着越来越多的泄露记录在网上公开,这一收集正在迅速增长。Monge-Elkan算法提供了最好的匹配结果,但其计算成本较高。基于levenshtein的方法在匹配和计算成本之间提供了最好的权衡,而基于Jacquard索引的方法对轻微的文本变化不太敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Behavioural Markers: Bridging the Gap between Art of Analysis and Science of Analytics in Criminal Intelligence How Analysts Think: How Do Criminal Intelligence Analysts Recognise and Manage Significant Information? Comparative Analysis of Crime Scripts: One CCTV Footage—Twenty-One Scripts Cyber Threat Intelligence Model: An Evaluation of Taxonomies, Sharing Standards, and Ontologies within Cyber Threat Intelligence A Statistical Method for Detecting Significant Temporal Hotspots Using LISA Statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1