Using a machine learning tool in diagnosis of network overload

R. Bisio, R. Gemello, E. Montariolo
{"title":"Using a machine learning tool in diagnosis of network overload","authors":"R. Bisio, R. Gemello, E. Montariolo","doi":"10.1109/ICC.1992.267979","DOIUrl":null,"url":null,"abstract":"Diagnosis of network anomalies is an important component of network management. A way to obtain a set of diagnostic rules by using a machine learning (ML) tool is described. In particular an overload situation is analyzed. Expert knowledge and a series of simulated network situations are employed together as inputs to a machine learning system. The ML tool helps the traffic engineer in proposing new rules and refining preexisting ones. The authors present a possible sequence of experiments that has led to a set of rules for recognizing a specific overload situation.<<ETX>>","PeriodicalId":170618,"journal":{"name":"[Conference Record] SUPERCOMM/ICC '92 Discovering a New World of Communications","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Conference Record] SUPERCOMM/ICC '92 Discovering a New World of Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.1992.267979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Diagnosis of network anomalies is an important component of network management. A way to obtain a set of diagnostic rules by using a machine learning (ML) tool is described. In particular an overload situation is analyzed. Expert knowledge and a series of simulated network situations are employed together as inputs to a machine learning system. The ML tool helps the traffic engineer in proposing new rules and refining preexisting ones. The authors present a possible sequence of experiments that has led to a set of rules for recognizing a specific overload situation.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习工具诊断网络过载
网络异常诊断是网络管理的重要组成部分。介绍了一种利用机器学习(ML)工具获取诊断规则集的方法。特别对超载情况进行了分析。专家知识和一系列模拟网络情况一起作为机器学习系统的输入。机器学习工具可以帮助交通工程师提出新规则并改进现有规则。作者提出了一个可能的实验序列,它导致了一套识别特定过载情况的规则
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A reduced-complexity trellis search decoding algorithm for extended class IV partial response systems Propagation characteristics at 20 GHz for satellite communications Performance of hierarchical multiplexing in ATM switch design An automatic failure isolation and reconfiguration methodology for fiber distributed data interface (FDDI) Access to a network channel: a survey into the unfairness problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1