Preserving privacy for moving objects data mining

S. Ho
{"title":"Preserving privacy for moving objects data mining","authors":"S. Ho","doi":"10.1109/ISI.2012.6284198","DOIUrl":null,"url":null,"abstract":"The prevalence of mobile devices with geopositioning capability has resulted in the rapid growth in the amount of moving object trajectories. These data have been collected and analyzed for both commercial (e.g., recommendation system) and security (e.g. surveillance and monitoring system) purposes. One needs to ensure the privacy of these raw trajectory data and the derived knowledge by not disclosing or releasing them to adversary. In this paper, we propose a practical implementation of a (ε; δ)-differentially private mechanism for moving objects data mining; in particular, we apply it to the frequent location pattern mining algorithm. Experimental results on the real-world GeoLife dataset are used to compare the performance of the (ε; δ)-differential privacy mechanism with the standard ε-differential privacy mechanism.","PeriodicalId":199734,"journal":{"name":"2012 IEEE International Conference on Intelligence and Security Informatics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2012.6284198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The prevalence of mobile devices with geopositioning capability has resulted in the rapid growth in the amount of moving object trajectories. These data have been collected and analyzed for both commercial (e.g., recommendation system) and security (e.g. surveillance and monitoring system) purposes. One needs to ensure the privacy of these raw trajectory data and the derived knowledge by not disclosing or releasing them to adversary. In this paper, we propose a practical implementation of a (ε; δ)-differentially private mechanism for moving objects data mining; in particular, we apply it to the frequent location pattern mining algorithm. Experimental results on the real-world GeoLife dataset are used to compare the performance of the (ε; δ)-differential privacy mechanism with the standard ε-differential privacy mechanism.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为移动对象数据挖掘保护隐私
具有地理定位功能的移动设备的普及导致了移动物体轨迹数量的快速增长。收集和分析这些数据是为了商业(例如,推荐系统)和安全(例如,监视和监测系统)目的。我们需要确保这些原始轨迹数据和衍生知识的隐私性,不将其泄露或释放给对手。在本文中,我们提出了a (ε;δ)-移动对象数据挖掘的差分私有机制;特别地,我们将其应用于频繁位置模式挖掘算法。在真实的GeoLife数据集上使用实验结果来比较(ε;δ)差分隐私机制与标准ε-差分隐私机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting criminal networks: SNA models are compared to proprietary models Securing cyberspace: Identifying key actors in hacker communities Emergency decision support using an agent-based modeling approach Payment card fraud: Challenges and solutions Extracting action knowledge in security informatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1