Unsupervised Classification of Premature Ventricular Contractions Based on RR Interval and Heartbeat Morphology

V. Atanasoski, M. Ivanovic, M. Marinković, G. Gligoric, B. Bojovic, A. Shvilkin, J. Petrovic
{"title":"Unsupervised Classification of Premature Ventricular Contractions Based on RR Interval and Heartbeat Morphology","authors":"V. Atanasoski, M. Ivanovic, M. Marinković, G. Gligoric, B. Bojovic, A. Shvilkin, J. Petrovic","doi":"10.1109/NEUREL.2018.8586997","DOIUrl":null,"url":null,"abstract":"Accurate automated detection of premature ventricular contractions from electrocardiogram requires a training set or expert intervention. We propose a fully automated unsupervised detection method. The algorithm first clusters morphologically similar heartbeats and then performs classification based on RR intervals and morphology. Tests on clinically recorded datasets show sensitivity of 94.7%, specificity of 99.6% and accuracy of 99.5%.","PeriodicalId":371831,"journal":{"name":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2018.8586997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Accurate automated detection of premature ventricular contractions from electrocardiogram requires a training set or expert intervention. We propose a fully automated unsupervised detection method. The algorithm first clusters morphologically similar heartbeats and then performs classification based on RR intervals and morphology. Tests on clinically recorded datasets show sensitivity of 94.7%, specificity of 99.6% and accuracy of 99.5%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于RR间期和心跳形态的室性早搏无监督分类
从心电图中准确自动检测室性早搏需要训练集或专家干预。我们提出了一种全自动无监督检测方法。该算法首先对形态学上相似的心跳进行聚类,然后基于RR区间和形态学进行分类。对临床记录数据集的测试显示灵敏度为94.7%,特异性为99.6%,准确性为99.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Brain - Machine Interfaces in the Context of Artificial Intelligence Development Feature Selection for Image Distortion Classification Supervised and Unsupervised Learning of Fetal Heart Rate Tracings with Deep Gaussian Processes Modeling and Optimization of Hexavalent Chromium Sorption onto Amberjet 1200H by Using Multiple-Linear Regression Real-Time Multi-Sensor Infrared Imagery Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1