Flight deck automation support with dynamic 4D trajectory management for ACAS: AUTOFLY-Aid

E. Koyuncu, E. Garcia, G. Inalhan
{"title":"Flight deck automation support with dynamic 4D trajectory management for ACAS: AUTOFLY-Aid","authors":"E. Koyuncu, E. Garcia, G. Inalhan","doi":"10.1109/ICNSURV.2012.6218387","DOIUrl":null,"url":null,"abstract":"AUTOFLY-Aid Project aims to develop and demonstrate novel automation support algorithms and tools to the flight crew for flight critical collision avoidance using “dynamic 4D trajectory management”. The automation support system is envisioned to improve the primary shortcomings of TCAS, and to aid the pilot through add-on avionics/head-up displays and reality augmentation devices in dynamically evolving collision avoidance scenarios. The main theoretical innovative and novel concepts to be developed by AUTOFLY-Aid project are a) design and development of the mathematical models of the full composite airspace picture from the flight deck's perspective, as seen/measured/informed by the aircraft flying in SESAR 2020, b) design and development of a dynamic trajectory planning algorithm that can generate at real-time (on the order of seconds) flyable (i.e. dynamically and performance-wise feasible) alternative trajectories across the evolving stochastic composite airspace picture (which includes new conflicts, blunder risks, terrain and weather limitations) and c) development and testing of the Collision Avoidance Automation Support System on a Boeing 737 NG FNPT II Flight Simulator with synthetic vision and reality augmentation while providing the flight crew with quantified and visual understanding of collision risks in terms of time and directions and countermeasures.","PeriodicalId":126055,"journal":{"name":"2012 Integrated Communications, Navigation and Surveillance Conference","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Integrated Communications, Navigation and Surveillance Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSURV.2012.6218387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

AUTOFLY-Aid Project aims to develop and demonstrate novel automation support algorithms and tools to the flight crew for flight critical collision avoidance using “dynamic 4D trajectory management”. The automation support system is envisioned to improve the primary shortcomings of TCAS, and to aid the pilot through add-on avionics/head-up displays and reality augmentation devices in dynamically evolving collision avoidance scenarios. The main theoretical innovative and novel concepts to be developed by AUTOFLY-Aid project are a) design and development of the mathematical models of the full composite airspace picture from the flight deck's perspective, as seen/measured/informed by the aircraft flying in SESAR 2020, b) design and development of a dynamic trajectory planning algorithm that can generate at real-time (on the order of seconds) flyable (i.e. dynamically and performance-wise feasible) alternative trajectories across the evolving stochastic composite airspace picture (which includes new conflicts, blunder risks, terrain and weather limitations) and c) development and testing of the Collision Avoidance Automation Support System on a Boeing 737 NG FNPT II Flight Simulator with synthetic vision and reality augmentation while providing the flight crew with quantified and visual understanding of collision risks in terms of time and directions and countermeasures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
飞行甲板自动化支持与动态4D轨迹管理的ACAS: AUTOFLY-Aid
AUTOFLY-Aid项目旨在开发和演示新的自动化支持算法和工具,为机组人员使用“动态4D轨迹管理”进行飞行关键碰撞避免。预计自动化支持系统将改善TCAS的主要缺点,并通过附加的航空电子设备/平视显示器和现实增强设备在动态发展的避碰场景中帮助飞行员。AUTOFLY-Aid项目将开发的主要理论创新和新颖概念是:a)从飞行甲板的角度设计和开发由SESAR 2020飞行的飞机看到/测量/获知的全复合空域图像的数学模型;B)设计和开发一种动态轨迹规划算法,该算法可以在不断发展的随机复合空域图(包括新的冲突、失误风险、c)在波音737 NG FNPT II飞行模拟器上开发和测试防撞自动化支持系统,该系统具有合成视觉和现实增强功能,同时为机组人员提供时间、方向和对策方面的碰撞风险量化和视觉理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring a flight deck based wake turbulence situational awareness tool From the drawing board to reality: Packaging tomorrow's aviation system Full 4D trajectory management - Ground Industry point of view Dependence of aeromacs interference on airport radiation pattern characteristics A comparison of noise abatement procedures using radar data and simulated flight trajectories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1