{"title":"Big Data Integration","authors":"P. Cudré-Mauroux","doi":"10.23919/ConTEL.2017.8000011","DOIUrl":null,"url":null,"abstract":"Until recently, structured (e.g., relational) and unstructured (e.g., textual) data were managed very differently: Structured data was queried declaratively using languages such as SQL, while unstructured data was searched using boolean queries over inverted indices. Today, we witness the rapid emergence of Big Data Integration techniques leveraging knowledge graphs to bridge the gap between different types of contents and integrate both unstructured and structured information more effectively. I will start this talk by giving a few examples of Big Data Integration. I will then describe two recent systems built in my lab and leveraging such techniques: ZenCrowd, a socio-technical platform that automatically connects Web documents to semi-structured entities in a knowledge graph, and Guider, a Big Data Integration system for the cloud.","PeriodicalId":410388,"journal":{"name":"2017 14th International Conference on Telecommunications (ConTEL)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Conference on Telecommunications (ConTEL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ConTEL.2017.8000011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Until recently, structured (e.g., relational) and unstructured (e.g., textual) data were managed very differently: Structured data was queried declaratively using languages such as SQL, while unstructured data was searched using boolean queries over inverted indices. Today, we witness the rapid emergence of Big Data Integration techniques leveraging knowledge graphs to bridge the gap between different types of contents and integrate both unstructured and structured information more effectively. I will start this talk by giving a few examples of Big Data Integration. I will then describe two recent systems built in my lab and leveraging such techniques: ZenCrowd, a socio-technical platform that automatically connects Web documents to semi-structured entities in a knowledge graph, and Guider, a Big Data Integration system for the cloud.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大数据集成
直到最近,结构化(例如,关系)和非结构化(例如,文本)数据的管理方式还非常不同:结构化数据使用SQL等语言进行声明式查询,而非结构化数据则使用倒排索引上的布尔查询进行搜索。如今,我们见证了大数据集成技术的迅速兴起,利用知识图谱来弥合不同类型内容之间的鸿沟,更有效地整合非结构化和结构化信息。我将以几个大数据集成的例子开始这次演讲。然后,我将描述在我的实验室中构建并利用这些技术的两个最新系统:zenccrowd,一个自动将Web文档连接到知识图谱中的半结构化实体的社会技术平台,以及Guider,一个用于云的大数据集成系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The future of optical interconnects for data centers: A review of technology trends Introducing a framework for reporting Behavioral Informatics interventions An approach to user interactions with IoT-enabled spaces Towards context classification and reasoning in IoT Real-time wireless UWB sensor network for person monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1